162
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Osmotic tolerance response of biocontrol agent Yarrowia lipolytica m18/3b under pre- and postharvest conditions

, , , , & ORCID Icon
Pages 153-170 | Received 01 Apr 2020, Accepted 04 Oct 2020, Published online: 26 Oct 2020

References

  • Abadias, M., Teixidó, N., Usall, J., Viñas, I., & Magan, N. (2001). Improving water stress tolerance of the biocontrol yeast Candida sake grown in molasses-based media by physiological manipulation. Canadian Journal of Microbiology, 47(2), 123–129. https://doi.org/10.1139/w00-138
  • Andreishcheva, E. N., Isakova, E. P., Sidorov, N. N., Abramova, N. B., Ushakova, N. A., Shaposhnikov, G. L., Soares, M. I., & Zvyagilskaya, R. A. (1999). Adaptation to salt stress in a salt-tolerant strain of the yeast Yarrowia lipolytica. Biochemistry (Mosc), 64(9), 1061–1067, PMID: 10521723.
  • Apaliya, M. T., Zhang, H., Zheng, X., Yang, Q., Mahunu, G. K., & Kwaw, E. (2018). Exogenous trehalose enhanced the biocontrol efficacy of Hanseniaspora uvarum against grape berry rots caused by Aspergillus tubingensis and Penicillium commune. Journal of the Science of Food and Agriculture, 98(12), 4665–4672. https://doi.org/10.1002/jsfa.8998
  • Arguelles, J. C. (2000). Physiological roles of trehalose in bacteria and yeasts: A comparative analysis. Archives of Microbiology, 174(4), 217–224. https://doi.org/10.1007/s002030000192
  • Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23(3), 277–294. https://doi.org/10.1016/0168-1605(94)90157-0
  • Bertrand, R. L. (2019). Lag phase is a dynamic, organized, adaptive, and evolvable period that prepares bacteria for cell division. Journal of Bacteriology, 201(7), https://doi.org/10.1128/JB.00697-18
  • Bonaterra, A., Badosa, E., Cabrefiga, J., Francés, J., & Montesinos, E. (2012). Prospects and limitations of microbial pesticides for control of bacterial and fungal pomefruit tree diseases. Trees (Berlin, Germany: West), 26(1), 215–226. https://doi.org/10.1007/s00468-011-0626-y
  • Cañamás, T. P., Viñas, I., Usall, J., Torres, R., Anguera, M., & Teixidó, N. (2008). Control of postharvest diseases on citrus fruit by preharvest applications of biocontrol agent Pantoea agglomerans CPA-2: Part II. Effectiveness of different cell formulations. Postharvest Biology and Technology, 49(1), 96–106. https://doi.org/10.1016/j.postharvbio.2007.12.005
  • Carbó, A., Torres, R., Teixidó, N., Usall, J., Magan, N., & Medina, A. (2018). Predicted ecological niches and environmental resilience of different formulations of the biocontrol yeast Candida sake CPA-1 using the Bioscreen C. BioControl, 63(6), 855–866. https://doi.org/10.1007/s10526-018-09910-4
  • Carly, F., & Fickers, P. (2018). Erythritol production by yeasts: A snapshot of current knowledge. Yeast, 35(7), 455–463. https://doi.org/10.1002/yea.3306
  • Casaregola, S., Neuvéglise, C., Lépingle, A., Bon, E., Feynerol, C., Artiguenave, F., … Gaillardin, C. (2000). Genomic exploration of the hemiascomycetous yeasts: 17. Yarrowia lipolytica. FEBS Letters, 487(1), 95–100. https://doi.org/10.1016/S0014-5793(00)02288-2
  • Daranas, N., Badosa, E., Frances, J., Montesinos, E., & Bonaterra, A. (2018). Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments. PLoS One, 13(1), e0190931. https://doi.org/10.1371/journal.pone.0190931
  • Da Silva, L., Bastos Tavares, C., Amaral, P., & Coelho, M. Z. (2012). Production of citric acid by Yarrowia lipolytica in different crude glycerol concentrations and in different nitrogen sources. Chemical Engineering Transactions, 27, 199–204. https://doi.org/10.3303/cet1227034
  • Droby, S., & Wisniewski, M. (2018). The fruit microbiome: A new frontier for postharvest biocontrol and postharvest biology. Postharvest Biology and Technology, 140, 107–112. https://doi.org/10.1016/j.postharvbio.2018.03.004
  • Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., & Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review. Critical Reviews in Food Science and Nutrition, 59(9), 1498–1513. https://doi.org/10.1080/10408398.2017.1417235
  • Flores, C. L., Gancedo, C., & Petit, T. (2011). Disruption of Yarrowia lipolytica TPS1 gene encoding trehalose-6-P synthase does not affect growth in glucose but impairs growth at high temperature. PLoS One, 6(9), e23695. https://doi.org/10.1371/journal.pone.0023695
  • Fontanille, P., Kumar, V., Christophe, G., Nouaille, R., & Larroche, C. (2012). Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresource Technology, 114, 443–449. https://doi.org/10.1016/j.biortech.2012.02.091
  • Gotor-Vila, A., Teixidó, N., Sisquella, M., Torres, R., & Usall, J. (2017). Biological characterization of the biocontrol agent Bacillus amyloliquefaciens CPA-8: The effect of temperature, pH and water activity on growth, susceptibility to antibiotics and detection of enterotoxic genes. Current Microbiology, 74(9), 1089–1099. https://doi.org/10.1007/s00284-017-1289-8
  • Hamill, P. G., Stevenson, A., McMullan, P. E., Williams, J. P., Lewis, A. D., Sudharsan, S., … Quinn, J. P. (2020). Microbial lag phase can be indicative of, or independent from, cellular stress. Scientific Reports, 10(1), 1–20. https://doi.org/10.1038/s41598-020-62552-4
  • Ippolito, A., & Nigro, F. (2000). Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables. Crop Protection, 19(8-10), 715–723. https://doi.org/10.1016/S0261-2194(00)00095-8
  • Iturriaga, G., Suárez, R., & Nova-Franco, B. (2009). Trehalose metabolism: From osmoprotection to signaling. International Journal of Molecular Sciences, 10(9), 3793–3810. https://doi.org/10.3390/ijms10093793
  • Kubiak, M., Borkowska, M., Białas, W., Korpys, P., & Celińska, E. (2019). Feeding strategy impacts heterologous protein production in Yarrowia lipolytica fed-batch cultures—insight into the role of osmolarity. Yeast, 36(5), 305–318. https://doi.org/10.1002/yea.3384
  • Lahlali, R., Hamadi, Y., El Guilli, M., & Jijakli, M. H. (2014). The ability of the antagonist yeast Pichia guilliermondii strain Z1 to suppress green mould infection in citrus fruit. Italian Journal of Food Safety, 3(4), 4774–4774. https://doi.org/10.4081/ijfs.2014.4774
  • Lastochkina, O., Seifikalhor, M., Aliniaeifard, S., Baymiev, A., Pusenkova, L., Garipova, S., Kulabuhova, D., & Maksimov, I. (2019). Bacillus Spp.: efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants, 8(4), 2223–7747. https://doi.org/10.3390/plants8040097
  • Li, B. Q., & Tian, S. P. (2006). Effects of trehalose on stress tolerance and biocontrol efficacy of Cryptococcus laurentii. Journal of Applied Microbiology, 100(4), 854–861. https://doi.org/10.1111/j.1365-2672.2006.02852.x
  • Liu, J., Sui, Y., Wisniewski, M., Droby, S., & Liu, Y. (2013). Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International Journal of Food Microbiology, 167(2), 153–160. https://doi.org/10.1016/j.ijfoodmicro.2013.09.004
  • Oh, D.-K., Cho, C.-H., Lee, J.-K., & Kim, S.-Y. (2001). Increased erythritol production in fed-batch cultures of Torula sp. By controlling glucose concentration [journal article]. Journal of Industrial Microbiology and Biotechnology, 26(4), 248–252. https://doi.org/10.1038/sj.jim.7000122
  • Papanikolaou, S., Fakas, S., Fick, M., Chevalot, I., Galiotou-Panayotou, M., Komaitis, M., Marc, I., & Aggelis, G. (2008). Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: Production of 1,3-propanediol, citric acid and single cell oil. Biomass and Bioenergy, 32(1), 60–71. https://doi.org/10.1016/j.biombioe.2007.06.007
  • Papanikolaou, S., Muniglia, L., Chevalot, I., Aggelis, G., & Marc, I. (2002). Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. Journal of Applied Microbiology, 92(4), 737–744. https://doi.org/10.1046/j.1365-2672.2002.01577.x
  • Papouskova, K., & Sychrova, H. (2006). Yarrowia lipolytica possesses two plasma membrane alkali metal cation/H+ antiporters with different functions in cell physiology. FEBS Letters, 580(8), 1971–1976. https://doi.org/10.1016/j.febslet.2006.02.064
  • Rakicka, M., RywiDska, A., Cybulski, K., & Rymowicz, W. (2016). Enhanced production of erythritol and mannitol by Yarrowia lipolytica in media containing surfactants. Brazilian Journal of Microbiology, 47, 417–423. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822016000200417&nrm=iso
  • Rymowicz, W., Rywińska, A., Żarowska, B., & Juszczyk, P. (2006). Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica. Chemical Papers, 60(5), 391–394. https://doi.org/10.2478/s11696-006-0071-3
  • Sekova, V. Y., Isakova, E. P., & Deryabina, Y. I. (2015). Biotechnological applications of the extremophilic yeast Yarrowia lipolytica (Review). Applied Biochemistry and Microbiology, 51(3), 278–291. https://doi.org/10.1134/s0003683815030151
  • Soto-Muñoz, L., Torres, R., Usall, J., Viñas, I., Dashevskaya, S., & Teixidó, N. (2015). Environmental monitoring of the biocontrol agentPantoea agglomerans CPA-2 applied to citrus fruit at preharvest. Annals of Applied Biology, 167(2), 250–261. https://doi.org/10.1111/aab.12224
  • Sui, Y., Wisniewski, M., Droby, S., & Liu, J. (2015). Responses of yeast biocontrol agents to environmental stress. Applied and Environmental Microbiology, 81(9), 2968–2975. https://doi.org/10.1128/AEM.04203-14
  • Teixidó, N., Torres, R., Viñas, I., Abadias, M., & Usall, J. (2011). 15 - Biological control of postharvest diseases in fruit and vegetables. In C. Lacroix (Ed.), Protective cultures, Antimicrobial metabolites and Bacteriophages for Food and Beverage Biopreservation (pp. 364–402). Woodhead. https://doi.org/10.1533/9780857090522.3.364
  • Teixidó, N., Usall, J., & Viñas, I. (1999). Efficacy of preharvest and postharvest Candida sake biocontrol treatments to prevent blue mould on apples during cold storage. International Journal of Food Microbiology, 50(3), 203–210. https://doi.org/10.1016/S0168-1605(99)00105-1
  • Teixidó, N., Viñas, I., Usall, J., & Magan, N. (1998). Control of blue mold of apples by preharvest application of Candida sake grown in media with different water activity. Phytopathology, 88(9), 960–964. https://doi.org/10.1094/phyto.1998.88.9.960
  • Tomaszewska-Hetman, L., & Rywinska, A. (2016). Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: Effect of osmotic pressure. Chemical Papers, 70(3), 272–283. https://doi.org/10.1515/chempap-2015-0201
  • Tomaszewska, L., Rywińska, A., & Gładkowski, W. (2012). Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. Journal of Industrial Microbiology & Biotechnology, 39(9), 1333–1343. https://doi.org/10.1007/s10295-012-1145-6
  • Torres, R., Vinas, I., Usall, J., Remon, D., & Teixidó, N. (2012). Influence of diluent and sample processing methods on the recovery of the biocontrol agent Pantoea agglomerans CPA-2 from different fruit surfaces. International Journal of Food Microbiology, 158(1), 85–88. https://doi.org/10.1016/j.ijfoodmicro.2012.06.019
  • Usall, J., Torres, R., & Teixidó, N. (2016). Biological control of postharvest diseases on fruit: A suitable alternative? Current Opinion in Food Science, 11, 51–55. https://doi.org/10.1016/j.cofs.2016.09.002
  • Wang, Y., Luo, Y., Sui, Y., Xie, Z., Liu, Y., Jiang, M., & Liu, J. (2018). Exposure of Candida oleophila to sublethal salt stress induces an antioxidant response and improves biocontrol efficacy. Biological Control, 127, 109–115. https://doi.org/10.1016/j.biocontrol.2018.09.002
  • Wang, M., Zhao, L., Zhang, X., Dhanasekaran, S., Abdelhai, M. H., Yang, Q., Jiang, Z., & Zhang, H. (2019). Study on biocontrol of postharvest decay of table grapes caused by Penicillium rubens and the possible resistance mechanisms by Yarrowia lipolytica. Biological Control, 130, 110–117. https://doi.org/10.1016/j.biocontrol.2018.11.004
  • Yang, L. B., Dai, X. M., Zheng, Z. Y., Zhu, L., Zhan, X. B., & Lin, C. C. (2015). Proteomic analysis of erythritol-producing Yarrowia lipolytica from glycerol in response to osmotic pressure. Journal of Microbiology and Biotechnology, 25(7), 1056–1069. https://doi.org/10.4014/jmb.1412.12026
  • Yang, Q., Wang, H., Zhang, H., Zhang, X., Apaliya, M. T., Zheng, X., & Mahunu, G. K. (2017). Effect of Yarrowia lipolytica on postharvest decay of grapes caused by Talaromyces rugulosus and the protein expression profile of T. rugulosus. Postharvest Biology and Technology, 126, 15–22. https://doi.org/10.1016/j.postharvbio.2016.11.015
  • Zhang, H., Chen, L., Sun, Y., Zhao, L., Zheng, X., Yang, Q., & Zhang, X. (2017). Investigating proteome and transcriptome defense response of apples induced by Yarrowia lipolytica. Molecular Plant-Microbe Interactions, 30(4), 301–311. https://doi.org/10.1094/mpmi-09-16-0189-r
  • Zhu, H., Zhao, L., Zhang, X., Foku, J. M., Li, J., Hu, W., & Zhang, H. (2019). Efficacy of Yarrowia lipolytica in the biocontrol of green mold and blue mold in Citrus reticulata and the mechanisms involved. Biological Control, 139, 104096. https://doi.org/10.1016/j.biocontrol.2019.104096

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.