589
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Nematophagous fungi, an extraordinary tool for controlling ruminant parasitic nematodes and other biotechnological applications

, &
Pages 777-793 | Received 13 Aug 2021, Accepted 09 Jan 2022, Published online: 04 Feb 2022

References

  • Abdullah-Al-Rekani, A. M., Abdulaziz Meshahbaz, R., Abdulhamid Yousif, A., & Majeed Khalaf, F. (2019). Gastrointestinal larval nematodes on pastures grazed by small ruminants of Duhok Area. In Y. Mustafa, S. Sadkhan, S. Zebari, & K. Jacksi (Eds.), Recent researches in earth and environmental sciences. Proceedings in earth and environmental sciences (pp. 159–169). Springer. https://doi.org/10.1007/978-3-030-18641-8_12
  • Acevedo-Ramírez, P. M., Figueroa-Castillo, J. A., Ulloa-Arvizú, R., Martínez-García, L. G., Guevara-Flores, A., Rendón, J. L., Valero-Coss, R. O., Mendoza-de Gives, P., & Quiroz-Romero, H. (2015). Proteolytic activity of extracellular products from Arthrobotrys musiformis and their effect in vitro against Haemonchus contortus infective larvae. Veterinary Record Open, 2(1), e000103. https://doi.org/10.1136/vetreco-2014-000103
  • Ahmad, G., Khan, A., Khan, A. A., Ali, A., & Mohhamad, H. I. (2021). Biological control: A novel strategy for the control of the plant parasitic nematodes. Antonie Van Leeuwenhoek, 114(7), 885–912. https://doi.org/10.1007/s10482-021-01577-9
  • Ali, R., Rooman, M., Mussarat, S., Norin, S., Ali, S., Adnan, M., & Khan, S. N. (2021). A systematic Review on comparative analysis, toxicology, and pharmacology of medicinal plants against Haemonchus contortus. Frontiers in Pharmacology, 12, 644027. https://doi.org/10.3389/fphar.2021.644027
  • Anderson, M. G., Jarman, T. B., & Rickards, R. W. (1995). Structures and absolute configurations of antibiotics of the oligosporon group from the nematode trapping fungus Arthrobotrys oligospora. Journal of Antibiotics, 48(5), 391–398. https://doi.org/10.7164/antibiotics.48.391
  • Araújo, J. M., Braga, F. R., Araújo, J. V., Soares, F. E. F., & Genier, H. L. (2010). Biological control of Taenia saginata eggs. Helminthologia (Tlanecé Vydanie), 47, 189–192. https://doi.org/10.2478/s11687-010-0028-5
  • Ayers, S., Zink, D. L., Mohn, K., Powell, J. S., Brown, C. M., Bills, G., Grund, A., Thompson, D., & Singh, S. B. (2010). Anthelmintic constituents of Clonostachys candelabrum. Journal of Antibiotics, 63(3), 119–122. https://doi.org/10.1038/ja.2009.131
  • Bakr, A. R., Mahdy, E. M., & Mousa, M. E. (2014). Biological control of root-knot nematode Meloidogyne incognita by Arthrobotrys oligospora. Egyptian Journal of Crop Protection, 9(1), 1–11.
  • Bampidis, V., Azimonti, G., Bastos, M. L., Christensen, H., Dusemund, B., Kos-Durjava, M. et al. (2020). Scientific opinion on the safety and efficacy of BioWorma® (Duddingtonia flagrans NCIMB 30336) as a feed additive for all grazing animals. EFSA Journal, 18(7), 6208. http://doi.org/10.2903/j.efsa.2020.6208.
  • Barbosa, A. C. M. S., Silva, L. P. C., Ferraz, C. M., Tobias, F. L., de Araújo, J. V., Loureiro, B., Braga, G. M. A. M., Veloso, F. B. R., Soares, F. E. F., Fronza, M., & Braga, F. R. (2019). Nematicidal activity of silver nanoparticles from the fungus Duddingtonia flagrans. International Journal of Nanomedicine, 2(14), 2341–2348. https://doi.org/10.2147/IJN.S193679
  • Braga, F. R., & Araújo, J. V. (2014). Nematophagous fungi for biological control of gastrointestinal nematodes in domestic animals. Applied Microbiology and Biotechnology, 98(1), 71–82. https://doi.org/10.1007/s00253-013-5366-z
  • Braga, F. R., Araújo, J. V., Campos, A. K., Araujo, J. M., Silva, A. S., Carvalho, R. O., & Tavela, A. O. (2008a). In vitro evaluation of the action of the nematophagous fungi Duddingtonia flagrans, Monacrosporium sinense and Pochonia chlamydosporia on Fasciola hepatica eggs. World Journal of Microbiology & Biotechnology, 24(8), 1559–1564. https://doi.org/10.1007/s11274-007-9643-9
  • Braga, F. R., Araújo, J. V., Silva, A. R., Araujo, J. M., Carvalho, R. O., Tavela, A. O., Campos, A. K., & Carvalho, G. R. (2009). Biological control of horse cyathostomin (Nematoda: Cyathostominae) using the nematophagous fungus Duddingtonia flagrans in tropical Southeastern Brazil. Veterinary Parasitology, 163(4), 335–340. https://doi.org/10.1016/j.vetpar.2009.05.003
  • Braga, F. R., Araújo, J. V., Silva, A. R., Carvalho, R. O., Araujo, J. M., Ferreira, S. R., & Benjamin, L. A. (2010). Predatory activity of the nematophagous fungus Duddingtonia flagrans on horse cyathostomin infective larvae. Tropical Animal Health and Production, 42(6), 1161–1165. https://doi.org/10.1007/s11250-010-9542-1
  • Braga, F. R., Araújo, J. V., Soares, F. E. F., Araujo, J. M., Geniêr, H. L. A., Silva, A. R., Carvalho, R. O., Queiroz, J. H., & Ferreira, S. R. (2011). Optimizing protease production from an isolate of the nematophagous fungus Duddingtonia flagrans using response surface methodology and its larvicidal activity on horse cyathostomin. Journal of Helminthology, 85(2), 164–170. https://doi.org/10.1017/S0022149X10000416
  • Braga, F. R., Ferraz, C. M., da Silva, E. N., & de Araújo, J. V. (2020). Efficiency of the Bioverm® (Duddingtonia flagrans) fungal formulation to control in vivo and in vitro of Haemonchus contortus and Strongyloides papillosus in sheep. 3 Biotech, 10(2), 62. https://doi.org/10.1007/s13205-019-2042-8
  • Campos, A. K., Araújo, J. V., Guimarães, M. P., & Dias, A. S. (2009). Resistance of different fungal structures of Duddingtonia flagrans to the digestive process and predatory ability on larvae of Haemonchus contortus and Strongyloides papillosus in goat feces. Parasitology Research, 105(4), 913–919. https://doi.org/10.1007/s00436-009-1476-z
  • Carvalho, R. O., Braga, F. R., & Araújo, J. V. (2011). Viability and nematophagous activity of the freeze-dried fungus Arthrobotrys robusta against Ancylostoma spp. infective larvae in dogs. Veterinary Parasitology, 10,176(2-3), 236–239. https://doi.org/10.1016/j.vetpar.2010.10.051
  • Casillas–Aguilar, J. A., Mendoza–de Gives, P., López–Arellano, M. E. & Liébano–Hernández, E. (2008). Evaluation of multinutritional biopellets containing Duddingtonia flagrans chlamydospores for the control of ovine haemonchosis. Annals of the New York Academy of Science, 1149(1), 161–163. https://doi.org/10.1196/annals.1428.076
  • Christian, C. D., Julienne, K., Pascal, A. O., Erick, V. B. A., Latifou, L., Andre, B. A., Patrick, A. E., & Mawule, S. H. A. (2021). Haemonchosis: A review on dreaded strongylosis that affects the zootechnical performance of sheep. Journal of Parasitology and Vector Biology, 13(1), 58–70. https://doi.org/10.5897/JPVB2020.0405
  • Costa-Silva, L. P., Oliveira, J. P., Keijok, W. J., da Silva, A. R., Aguiar, A. R., Guimarães, M. C. C., Ferraz, C. M., Araújo, J. V., Tobias, F. L., & Braga, F. R. (2017). Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans. International Journal of Nanomedicine, 12, 6373–6381. https://doi.org/10.2147/IJN.S137703
  • Dasgupta, M. K., & Khan, M. K. (2015). Nematophagous fungi: Ecology, Diversity and geographical distribution. In T. H. Askary, & P. R. P. Martinelli (Eds.), Biocontrol agents of phytonematodes, 126. CAB International. https://doi.org/10.1079/9781780643755.0126
  • De Hoog, G. S., & Van Oorschot, C. A. N. (1985). Taxonomy of the Dactylaria complex IV-VI. Studies in Mycology, 26, 97–121.
  • Delgado-Núñez, E. J., Zamilpa, A., González-Cortazar, M., Olmedo-Juárez, A., Cardoso-Taketa, A., Sánchez-Mendoza, E., Tapia-Maruri, D., Salinas-Sánchez, D. O., & Mendoza-de Gives, P. (2020). Isorhamnetin: A nematocidal flavonoid from Prosopis Laevigata leaves against Haemonchus contortus eggs and larvae. Biomolecules, 10(5), 773. https://doi.org/10.3390/biom10050773
  • De Oliveira, L. D. S. S. C. B., Dias, F. G. S., Melo, A. L. T., de Carvalho, L. M., Silva, E. N., & Araújo, J. V. (2021). Bioverm® in the control of nematodes in beef cattle raised in the Central-West Region of Brazil. Pathogens, 110(5), 548. https://doi.org/10.3390/pathogens10050548
  • Duddington, C. L. (1950). A new predacious species of trichothecium. Transactions of the British Mycological Society, 32(3-4), 284–287. https://doi.org/10.1016/S0007-1536(49)80019-2
  • Duddington, C. L. (1956). The predacious fungi: Zoopa-gales and Moniliales. Biological Review, 31(2), 152–93. https://doi.org/10.1111/j.1469-185X.1956.tb00651.x
  • Ferraz, C. M., Silva, L. P. C., de Freitas Soares, F. E., Souza, R. L. O., Tobias, F. L., de Araújo, J. V., Veloso, F. B. R., Laviola, F. P., Endringer, D. C., de Gives, P. M., & Braga, F. R. (2020). Effect of silver nanoparticles (AgNP's) from Duddingtonia flagrans on cyathostomins larvae (subfamily: Cyathostominae). Journal of Invertebrate Pathology, 174, 107395. http://doi.org/10.1016/j.jip.2020.107395
  • Fitz-Aranda, J. A., Mendoza-de-Gives, P., Torres-Acosta, J. F., Liébano-Hernández, E., López-Arellano, M. E., Sandoval-Castro, C. A., & Quiroz-Romero, H. (2013). Duddingtonia flagrans chlamydospores in nutritional pellets: Effect of storage time and conditions on the trapping ability against Haemonchus contortus larvae. Journal of Helminthology, 16, 1–6. https://doi.org/10.1017/S0022149X13000539
  • Githiori, J. B., Höglund, J., & Waller, P. J. (2005). Ethnoveterinary plant preparations as livestock dewormers: Practices, popular beliefs, pitfalls and prospects for the future. Animal Health Research Review, 6(1), 91–103. http://doi.org/10.1079/ahr2005099
  • Gomes, A. P., Ramos, M. L., Vasconcellos, R. S., Jensen, J. R., Vieira-Bressan, M. C., & Araujo, J. V. (2000). In vitro activity of Brazilian strains of the predatory fungi Arthrobotrys spp. on free-living nematodes and infective larvae of Haemonchus placei. Memorias do Instituto Oswaldo Cruz, 95(6), 873–886. https://doi.org/10.1590/S0074-02762000000600023
  • González-Garduño, R., Arece-García, J., & Torres-Hernández, G. (2021). Physiological, immunological and genetic factors in the resistance and susceptibility to gastrointestinal nematodes of sheep in the peripartum period: A review. Helminthología, 58(2), 134–151. https://doi.org/10.2478/helm-2021-0020
  • Goodking, K. (2018). Pasture management for parasite control. https://www.livingwithgotlands.com/2018/05/pasture-management-for-parasite-control/
  • Grisi, L., Leite, R. C., Martins, J. R., Barros, A. T., Andreotti, R., Cançado, P. H., León, A. A., Pereira, J. B., & Villela, H. S. (2014). Reassessment of the potential economic impact of cattle parasites in Brazil. Brazilian Journal of Veterinary Parasitology, Jaboticabal, 23(2), 150–156. https://doi.org/10.1590/S1984-29612014042
  • Grønvold, J., Wolstrup, J., Nansen, P., Larsen, M., Henriksen, S. A., Bjørn, H., Kirchheiner, K., Lassen, K., Rawat, H., & Kristiansen, H. L. (1999). Biotic and abiotic factors influencing growth rate and production of traps by the nematode trapping fungus Duddingtonia flagrans when induced by Cooperia oncophora larvae. Journal of Helminthology, 73(2), 129–136. https://doi.org/10.1017/S0022149X99000190
  • Haj-Nuaima, R., Ashrafi, S., Maier, W., & Heuer, H. (2021). Fungi isolated from cysts of the beet cyst nematode parasitized its eggs and counterbalanced root damages. Journal of Pest Science, 94(2), 563–572. https://doi.org/10.1007/s10340-020-01254-2
  • Han, P., Zhang, X., Xu, D., Zhang, B., Lai, D., & Zhou, L. (2020). Metabolites from Clonostachys fungi and their biological activities. Journal of Fungi, 6(4), 229. https://doi.org/10.3390/jof6040229
  • Hoste, H., & Chartier, C. (1993). Comparison of the effects on milk production of concurrent infection with Haemonchus contortus and Trichostrongylus colubriformis in high- and low-producing dairy goats. American Journal of Veterinary Research, 54(11), 1886–1893. https://www.researchgate.net/publication/14907066_Comparison_of_the_effects_on_milk_production_of_concurrent_infection_with_Haemonchus_contortus_and_Trichostrongylus_colubriformis_in_high-_and_low-producing_dairy_goats
  • Hoste, H., Torres-Acosta, J. F., Sandoval-Castro, C. A., Mueller-Harvey, I., Sotiraki, S., Louvandini, H., Thamsborg, S. M., & Terrill, T. H. (2015). Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Veterinary Parasitology, 15(212), 5–17. https://doi.org/10.1016/j.vetpar.2015.06.026
  • Hsuey, Y.-P., Gronquist, R. M., Scwartz, M. E., Lee, C.-H., Gharib, S., Shroeder, C. F., & Stemberg, W.-P. (2017). Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. eLife, 6, e20023. https://doi.org/10.7554/eLife.20023
  • Hussain, M., Zouhar, M., & Ryšánek, P. (2017). Effects of nematophagous fungi on viability of eggs and juveniles of Meloidogyne incognita. The Journal of Animal & Plant Sciences, 27(1), 252–258.
  • Iqbal, Z., Lateef, M., Ashraf, M., & Jabbar, A. (2004). Anthelmintic activity of Artemisia brevifolia in sheep. Journal of Ethnopharmacology, 93(2-3), 265–268. https://doi.org/10.1016/J.JEP.2004.03.046
  • Jaffee, B. (2004). Wood, nematodes, and the nematode-trapping fungus Arthrobotrys oligospora. Soil Biology and Biochemistry, 36(7), 1171–1178. https://doi.org/10.1016/j.soilbio.2004.03.003
  • Jasso-Díaz, G., Torres-Hernández, G., Zamilpa, A., Becerril-Pérez, C., Ramírez- Bribesca, J. E., Hernández-Mendo, O., Sánchez-Arroyo, H., González-Cortazar, M., & Mendoza-de Gives, P. (2017). In vitro assessment of Argemone mexicana, Taraxacum officinale, Ruta chalepensis and tagetes filifolia against Haemonchus contortus nematode eggs and infective (L3) larvae. Microbial Pathogenesis, 109, 162–168. https://doi.org/10.1016/j.micpath.2017.05.048
  • Jiménez-Penago, G., González-Garduño, R., Martínez-Bolaños, L., Maldonado-Siman, E., Cruz-Tamayo, A. A., & Mendoza-de Gibes, P. (2021). In vitro anthelmintic activity of Pimienta dioica and Origanum vulgare essential oils on gastrointestinal nematodes from sheep and cattle. Journal of Parasitic Diseases, https://doi.org/10.1007/s12639-021-01401-1
  • Kahn, L. P., Norman, T. M., Walkden-Brown, S. W., Crampton, A., & O’Connor, L. J. (2007). Trapping efficacy of Duddingtonia flagrans against Haemonchus contortus at temperatures existing at lambing in Australia. Veterinary Parasitology, 46(1-2), 83–89. https://doi.org/10.1016/j.vetpar.2007.02.004
  • Kar, P. K., Murmu, S., Saha, S., Tandon, V., & Acharya, K. (2014). Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. Plos one, 9, 11–19. https://doi.org/10.1371/journal.pone.0084693
  • Kerry, B. R., & Hidalgo, L. (2004). Application of Pochonia chlamydosporia in the integrated control of root-knot nematodes on organically grown vegetable crops in Cuba. IOBC Bulletin, 27(1), 123–126.
  • Khan, A., Williams, K. L., & Nevalainen, H. K. M. (2006). Control of plant-parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum in pot trials. Biocontrol, 51(5), 643–658. https://doi.org/10.1007/s10526-005-4241-y
  • Li, J., Zou, C., Xu, J., Ji, X., Niu, X., Yang, J., Huang, X., & Zhang, K.-Q. (2015). Molecular mechanisms of nematode-nematophagous microbe interactions: Basis for biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 53(1), 67–95. https://doi.org/10.1146/annurev-phyto-080614-120336
  • Liou, G. Y., & Tzean, S. S. (1997). Phylogeny of the genus Arthrobotrys and allied nematode-trapping fungi based on rDNA sequences. Mycologia, 89(6), 876–884. https://doi.org/10.1080/00275514.1997.12026858
  • Liu, X., Xiang, M., & Che, Y. (2009). The living strategy of nematophagous fungi. Mycoscience, 50, 20–25. https://doi.org/10.1007/s10267-008-0451-3
  • Lobato, V., Rath, S., & Reyes-Reyes, F. G. (2006). Occurrence of ivermectin in bovine milk from the Brazilian retail market. Food Additives and Contaminants, 23(7), 668–73. https://doi.org/10.1080/02652030600627206
  • López-Arellano, M. E., Flores, C. J., Mendoza-de Gives, P., Vázquez, P. V. M., Liébano, E., Bravo, A., Herrera, R. D., Godínez, E., Várgas, P., & Zamudio, F. (2006). Use of Bacillus thuringiensis toxin as an alternative method of control against Haemonchus contortus. Annals of the New York Academy of Sciences, 1081(1), 347–354. https://doi.org/10.1196/annals.1373.049
  • Lopez-Llorca, L. V., & Claugher, D. (1990). Appressoria of the nematophagous fungus Verticillium suchlasporium. Micron and Microscopica Acta, 21(3), 125–130. https://doi.org/10.1016/0739-6260(90)90014-7
  • Lopez-Llorca, L. V., Maciá-Vicente, J. G., & Jansson, H.-B. (2007). Mode of action and interactions of nematophagous fungi. In A. Ciancio, & K. G. Mukerji (Eds.), Integrated management and biocontrol of vegetable and grain crops nematodes (pp. 51–76). Springer. https://doi.org/10.1007/978-1-4020-6063-2_3
  • Lourenco, A., Fraga-Corral, M., De Colli, L., Moloney, M., Danaher, M., & Jordan, K. (2020). Determination of the presence of pathogens and anthelmintic drugs in raw milk and raw milk cheeses from small scale producers in Ireland. LWT, 130, 109347, ISSN 0023-6438. https://doi.org/10.1016/j.lwt.2020.109347
  • Lozano-Soria, A., Picciotti, U., Lopez-Moya, F., Lopez-Cepero, J., Porcelli, F., & Luis Vicente Lopez-Llorca, L. V. (2020). Volatile organic compounds from entomopathogenic and nematophagous fungi, repel banana black weevil (Cosmopolites sordidus). bioRxiv preprint. https://doi.org/10.1101/2020.07.03.186429
  • Lysek, H., & Sterba, J. (1991). Colonization of Ascaris lumbricoides eggs by the fungus Verticillium chlamydosporium Goddard. Folia Parasitologica, 38(3), 255–259.
  • Magri-Ferraz, C., Pinheiro-Costa-Silva, L., de Freitas-Soares, F. E., Oliveira-Souza, L. R., Tobias, L. F., Victor de Araújo, J., Rodrigues-Veloso, B. F., Pessoa-Laviola, F., Coutinho-Endringer, D., Mendoza-de Gives, P., & Fábio Ribeiro, B. (2020). Effect of silver nanoparticles (AgNP's) from Duddingtonia flagrans on cyathostomins larvae (subfamily: Cyathostominae). Journal of Invertebrate Pathology, 174, 107395. https://doi.org/10.1016/j.jip.2020.107395
  • Mekonnen, G. (2021). A review on gastrointestinal nematodes in small ruminants. Advances in Applied Science Research, 12(7), 1–4. https://www.imedpub.com/articles/a-review-on-gastrointestinal-nematodesin-small-ruminants.pdf
  • Mello, I. N. K., Braga, F. R., Monteiro, T., Freitas, L. G., Araujo, J. M., Soares, F. E. F., & Araújo, J. V. (2013). Biological control of infective larvae of Ancylostoma spp. in beach sand. Revista Iberoamericana de Micología, 31(2), 114–118. https://doi.org/10.1016/j.riam.2013.05.003
  • Mendoza-de Gives, P. (2011). Carnivorous fungi: The cruelest executioners of nematodes in the soil. Mushroom the Journal, 1, 31–36.
  • Mendoza-de Gives, P., Davies, K. G., Clark, S. J., & Behnke, J. M. (1999). Predatory behaviour of trapping fungi against srf mutants of Caenorhabditis elegans and different plant and animal parasitic nematodes. Parasitology, 119(1), 95–104. https://doi.org/10.1017/s0031182099004424
  • Mendoza-de Gives, P., & Ribeiro-Braga, F. (2017). Pochonia chlamydosporia: A promising biotechnological tool against parasitic nematodes and geohelminths. In R. H. Manzanilla-López & L. V. Lopez-Llorca (Eds.), Perspectives in sustainable nematode management through Pochonia chlamydosporia applications for root and rhizosphere health, sustainability in plant and crop protection. https://doi.org/10.1007/978-3-319-59224-4_17
  • Mendoza-de Gives, P., López Arellano, M. E., Liébano Hernández, E., & Aguilar Marcelino, L. (2012). Plant extracts: A potential tool for controlling animal parasitic nematodes. In: The biosphere. Dr. Natarajan ishearan (ed.). Intech Editorial, 1, 119–130. https://cdn.intechopen.com/pdfs/31343/InTech
  • Meyer, W. J., & Wiebe, M. G. (2003). Enzyme production by the nematode-trapping fungus Duddingtonia flagrans. Biotechnol Letters, 25(10), 791–795. https://doi.org/10.1023/A:1023580621840
  • Miller, E. J., Burke, M. J., & Terrill, H. T. (2021). BioWorma as an Aid for controlling ruminant nematode parasites. Journal of Animal Science, 99(2), 36. https://doi.org/10.1093/jas/skab096.065
  • Minguetto, J. G. M., Bogado, A. L. G., Okano, W., Cunha, F., Silva, L. F. C., Zanol, L. C., Ferraz, D., Moreira, C. M., Tobias, T. F., Braga, F. L., & Araújo, F. T., & V, J. (2021). Biological control of gastrointestinal nematodes in young ewes treated with fungi. Biocontrol Science and Technology, 31(5), 1–13. https://doi.org/10.1080/09583157.2020.1869699
  • Mittal, N., Saxena, G., & Mukerji, K. G. (1999). Biological control of root-knot nematodes by nematode-destroying fungi. In J. Singh & K. R. Aneja (Eds.), From ethnomycology to fungal biotechnology (pp. 163–171). Springer. https://doi.org/10.1007/978-1-4615-4815-7_15
  • Morgan-Jones, G., & Rodriguez-Kabana, R. (1988). Fungi colonizing cysts and eggs. Pages 39-58 in: Diseases of Nematodes, Vol. 2. G. O. Poinar, Jr. and H. B. Jansson, eds. CRC Press, Boca Raton, FL.
  • Mota, M. A., Campos, A. K., & Araújo, J. V. (2003). Controle biológico de helmintos parasitos de animais: Estágio atual e perspectivas futuras. (Biological control of animal parasitic helminths: Current stage and future perspectives(. Pesquisa Veterinária Brasileira, 23(3), 93–100. https://doi.org/10.1590/S0100-736X2003000300001
  • Naeem, M., Iqbal, Z., & Roohi, N. (2020). Ovine haemonchosis: A review. Tropical Animal Health and Production, 53(1), 19. https://doi.org/10.1007/s11250-020-02439-8
  • Netra, A. B., Gunaseelan, L., Porteen, K., & Bojiraj, M. (2016). Veterinary drug residues in environment – potential hazards. Indian Veterinary Journal, 93((07|7)), 14–16.
  • Niu, X. M., Wang, Y. L., Chu, Y. S., Xue, H. X., Li, N., Wei, L. X., Mo, M. H., & Zhang, K. Q. (2010). Nematode-toxic aurovertin-type metabolites from a root-knot nematode parasitic fungus Pochonia chlamydosporia. Journal of Agriculture and Food Chemistry, 27, 58(2), 828–34. https://doi.org/10.1021/jf903259n. PMID: 20000774.
  • Nordbring-Hertz, B., Jansson, H. B., & Tunlid, A. (2006). Nematophagous fungi. In: Encyclopedia of Life Sciences. Chichester: John Wiley & Sons, 2006. p. 1-11.
  • Ojeda-Robertos, N. F., Aguilar-Marcelino, L., Olmedo-Juárez, A., Luna-Palomera, C., Peralta-Torres, J. A., López-Arellano, M. E., & Mendoza-de Gives, P. (2019). In vitro predatory activity of nematophagous fungi isolated from water buffalo feces and from soil in the Mexican southeastern. Revista Brasileira de Parasitologia Veterinaria, 6(2), 314–319. https://doi.org/10.1590/S1984-29612019011
  • Park, J. O., Hargeaves, J. R., McConville, E. J., Stirling, G. R., Ghisalberti, E. L., & Sivasothamparam, K. (2004). Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) samson. Letters in Applied Microbiology, 38(4), 271–276. https://doi.org/10.1111/j.1472-765X.2004.01488.x
  • Paz-Silva, A., Francisco, I., Valero-Coss, R. O., Cortiñas, F. J., Sánchez, J. A., Francisco, R., Arias, M., Suárez, J. L., López-Arellano, M. E., Sánchez-Andrade, R., & Mendoza-de Gives, P. (2011). Ability of the fungus Duddingtonia flagrans to adapt to the cyathostomin egg-output by spreading chlamydospores. Veterinary Parasitology, 30(1-3), 277–282. https://doi.org/10.1016/j.vetpar.2011.02.014
  • Peña-Espinoza, M., Thamsborg, S. M., Desrues, O., Hansen, T. V. A., & Enemark, H. L. (2016). Anthelmintic effects of forage chicory (Cichorium intybus) against gastrointestinal nematode parasites in experimentally infected cattle. Parasitology, 143, 1279–93. http://doi.org/10.1017/S0031182016000706.
  • Pramer, D., & Kuyama, S. (1963). II. Nemin and the nematiode-trapping fungi. Bacteriology Review, 27(3), 282–292. https://doi.org/10.1128/br.27.3.282-292.1963
  • Rodríguez-Vivas, R. I., Grisi, L., Pérez de León, A. A., Silva-Villelad, H., Torres-Acosta, K. F. J., Fragoso-Sánchez, H., Romero-Salas, D., Rosario-Cruz, R., Saldiernah, F., & García-Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8(1), 61–74. http://doi.org/10.22319/rmcp.v8i1.4305
  • Rodrigues, J. A., Alvares, F. B. V., Silva, J. T., Ferreira, I. C., Costa, P. W., Sarmento, W. F., Feitosa, T. F., Araujo, J. V., Braga, F. R., & Vilela, V. L. R. (2020). Predatory effects of the fungus Arthrobotrys cladodes on sheep gastrointestinal nematodes. Biocontrol Science and Technology, 30(8), 830–839. https://doi.org/10.1080/09583157.2020.1775176
  • Rodrigues, J. A., Roque, F. L., Álvares, F. B. V., Silva, A. L. P. D., Lima, E. F., Silva-Filho, G. M. D., Feitosa, T. F., Araújo, J. V., Braga, F. R., & Vilela, V. L. R. (2021). Efficacy of a commercial fungal formulation containing Duddingtonia flagrans (Bioverm®) for controlling bovine gastrointestinal nematodes. Revista Brasileira de Parasitologia Veterinaria, 30, 1–10. https://doi.org/10.1590/s1984-29612021025
  • Roeber, F., Jex, R. A., & Gasser, B. R. (2013). Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance – an Australian perspective. Parasite Vectors, 6(1), 153. https://doi.org/10.1186/1756-3305-6-153
  • Sagüés, M. F., Purslow, P., Fernández, S., Fusé, L., Iglesias, L., & Saumell, C. (2011). Nematophagous fungi used for the biological control of gastrointestinal nematodes in livestock and administration routes. Revista Iberoamericana de Micolología, 28(4), 143–147. https://doi.org/10.1016/j.riam.2011.06.009
  • Sayre, M. R. (1986). Pathogens for biological control of nematodes. Crop Protection, 5(4), 268–276. https://doi.org/10.1016/0261-2194(86)90062-1
  • Sharma, R., & Ganguly, S. (2016). Gastrointestinal nematodiasis in small ruminants and anthelmintic resistance: A review. Journal of Immunology and Immunopathology, 18(2), 100–104. https://doi.org/10.5958/0973-9149.2016.00016.2
  • Silva, M. E., Araujo, J. M., Braga, F. R., Borges, L. A., Lima, W. S., & Pezzi, M. G. (2013). Mycelial mass production of fungi Duddingtonia flagrans and Monacrosporium thaumasium under different culture conditions. Revista Brasileira de Parasitologia Veterinária, 17, 123-128. https://doi.org/10.1186/1756-0500-6-340
  • Soares, F. E. F., Braga, F. R., Araújo, J. V., Mozer, L. R., Lima, W. S., & Queiroz, J. H. (2013). Nematicidal activity of three novel extracellular proteases of the nematophagous fungus Monacrosporium sinense. Parasitology Research, 112(4), 1557–1565. https://doi.org/10.1007/s00436-013-3304-8.
  • Soares, F. E. F., Sulfiate, B. L., & Queiroz, J. H. (2018). Nematophagous fungi: Far beyond the endoparasite, predator and ovicidal groups. Agriculture and Natural Resources, 52(1), 1–8. https://doi.org/10.1016/j.anres.2018.05.010
  • Sobral, S. A., Ferreira, B. S., Senna, C. C., Ferraz, C. M., Moreira, T. F., & Junior, O. F. L. (2019). Rhabditis spp., in the Espírito Santo, State of Brazil and evaluation of biological control. Revista Brasileira de Parasitologia Veterinaria, 28(2), 333–337. https://doi.org/10.1590/s1984-29612019020
  • Soliman, S. M., El-Deriny, M. M., Ibrahim, S. S. D., Zakaria, H., & Ahmed, Y. (2021). Suppression of root-knot nematode Meloidogyne incognita on tomato plants using the nematode trapping fungus Arthrobotrys oligospora fresenius. Journal of Applied Microbiology, 131(2), https://doi.org/10.1111/jam.15101
  • Stirling, R. G., Smith, J. L., Licastro, A. K., Lois, M., & Eden, M. L. (1998). Control of root-knot nematode with formulations of the nematode-trapping fungus Arthrobotrys dactyloides. Biological Control, 11(3), 224–230. https://doi.org/10.1006/bcon.1997.0603
  • Strain, S.A., & Stear, M.J. (2001). The influence of protein supplementation on the immune response to Haemonchus contortus. Parasite Immunology, 23(10), 527–531. https://doi.org/10.1046/j.1365-3024.2001.00410.x
  • Sun, Z.-B., Li, S.-D., Ren, Q., Xu, J. L., Lu, X., & Sun, M.-H. (2020). Biology and applications of Clonostachys rosea. Journal of Applied Microbiology, 129(3), 486–495. https://doi.org/10.1111/jam.14625
  • Tarpoff, A. J. (2021). Understanding internal parasites in beef cattle. K-State, Research and Extension. https://enewsletters.k-state.edu/beeftips/2021/03/22/understanding-internal-parasites-in-beef-cattle/
  • Tazi, H., Hamza, M. A., Hallouti, A., Benjlil, H., Idhmida, A., Furze, N. J., Paulitz, C. T., El Hassan, M., Boubaker, H., & El Mousadik, A. (2021). Biocontrol potential of nematophagous fungi against Meloidogyne spp. Infecting tomato. Organic Agriculture, 11(1), 63–71. https://doi.org/10.1007/s13165-020-00325-z
  • Tomoda, H., Ohyama, Y., Abe, T., Tabata, N., Namikoshi, M., Yamaguchi, Y., Masuma, R., & Omura, S. (1999). Roselipins, inhibitors of diacylglycerol acyltransferase, produced by Gliocladium roseum KF-1040. Journal of Antibiotics (Tokyo), 52(8), 689–94. http://doi.org/10.7164/antibiotics.52.689
  • Toscano, J. H. B., Okino, C. H., Dos, I. B., Giraldelo, L. A., von Haehling, M. B., Esteves, S. N., & de Souza-Chagas, A. C. (2019). Innate immune responses associated with resistance against Haemonchus contortus in morada nova sheep. Journal of Immunological Research, 11(2019), 3562672. https://doi.org/10.1155/2019/3562672. PMID: 31815153; PMCID: PMC6877983.
  • Urbanek, A. K., Rymowicz, W., Strzelecki, M. C., Kociuba, W., Franczak, Ł, & Mirończuk, A. M. (2017). Isolation and characterization of Arctic microorganisms decomposing bioplastics. AMB Express, 7(1), 148. https://doi.org/10.1186/s13568-017-0448-4
  • Vidal-Diez de Ulzurrun, G., & Hsueh, Y. P. (2018). Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin. Applied Microbiolology and Biotechnology, 102(9), 3939–3949. http://doi.org/10.1007/s00253-018-8897-5
  • Waller, P. J. (1993). Nematophagous fungi: Prospective biological control agents of animal parasitic nematodes? Parasitology Today, 9(11), 429–31. https://doi.org/10.1016/0169-4758(93)90055-k. PMID: 15463686
  • Waller, P. J., Knox, M. R., & Feado, M. (2001). The potential of nematophagous fungi to control the free-living stages of nematodes parasites of sheep: Feeding and block studies with Duddingtonia flagrans. Veterinary Parasitology, 102(4), 321–330. https://doi.org/10.1016/S0304-4017(01)00542-8
  • Wang, Y., Sun, L., Yi, S., Huang, Y., Lenaghan, S. C., & Zhang, M. (2013). Naturally occurring nanoparticles from Arthrobotrys oligospora as a potential immunostimulatory and antitumor agent. Advanced Functional Materials, 23(17), 2175–2184. https://doi.org/10.1002/adfm.201202619
  • Wei, L.-X., Zhang, H.-X., Tan, J.-L., Chu, Y.-S., Li, N., Xue, H.-X., Wang, Y.-L., Niu, X.-M., Zhang, Y., & Zhang, K.-Q. (2011). Arthrobotrisins A-C, oligosporons from the nematode-trapping fungus Arthrobotrys oligospora. Journal of Natural Products, 74, 526–1530. https://doi.org/10.1021/np200187z.
  • Yang, J., Tian, B., Liang, L., & Zhang, K.-Q. (2007). Extracellular enzymes and the pathogenesis of nematophagous fungi. Applied Microbiology and Biotechnology, 75(1), 21–31. https://doi.org/10.1007/s00253-007-0881-4
  • Yang, J., Liang, L., Li, J., & Zhang, K. Q. (2013). Nematicidal enzymes from microorganisms and their applications. Applied Microbiology and Biotechnology, 97, 7081–7095. https://doi.org/10.1007/s00253-013-5045-0ued
  • Yeates, P. J., & Waller, K. L. (1997). Soil nematodes as indicators of the effect of management on grass-lands in the New england tablelands NSW: Effect of measures for control of parasites of sheep. Pedobiology, 41, 537–548.
  • Yu, Z., Mo, M., Zhang, Y., & Zhang, K.-Q. (2014). Taxonomy of nematode-trapping fungi from orbiliaceae, ascomycota. In Z. Ke-Qin, & K. D. Hyde (Eds.), Nematode-Trapping Fungi. Fungal Diversity Research series, volume 23. Springer. https://doi.org/10.1007/978-94-017-8730-7_3
  • Zaheer, S., Hussain, A., Khalil, A., Mansha, M., & Lateef, M. (2019). In vitro anthelmintic activity of ethanolic extracts of Camellia sinensis L. and Albizia lebbeck L. against Haemonchus contortus. Punjab University Journal Zoology, 34(1), 41–45. http://doi.org/10.17582/journal.pujz/2019.34.1.41.45
  • Zeineldin, M. M., Sabek, A. A., Barakat, R. A., Elghandour, Y. M. M. M., Salem, M. Z. A., & Montes de Oca, R. (2020). Potential contribution of plants bioactive in ruminant productive performance and their impact on gastrointestinal parasites elimination. Agroforestry Systems, 94(4), 1415–1432. https://doi.org/10.1007/s10457-018-0295-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.