165
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Different maize (Zea mays L.) inbreds influence the efficacy of Beaveria bassiana against major maize caterpillar pests, which is potentially affected by maize pathogen resistance

ORCID Icon &
Pages 847-862 | Received 03 May 2021, Accepted 12 Mar 2022, Published online: 13 Apr 2022

References

  • Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiology Research, 221(4), 36–49. https://doi.org/10.1016/j.micres.2019.02.001
  • Aljbory, Z., & Chen, M.-S. (2016). Indirect plant defenses against insect herbivores: A review. Insect Science, 25(1), 2–23. https://doi.org/10.1111/1744-7917.12436
  • Bing, L. A., & Lewis, L. C. (1991). Suppression of Ostrinia nubilalis (Hübner) (Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environmental Entomology, 20(4), 1207–1211. https://doi.org/10.1093/ee/20.4.1207
  • Chu, Z. J., Wang, S. H., Ying, X. W., & Feng, M. G. (2016). Genome-wide host pathogen interaction unveiled by transcriptomic response of diamond back moth to fungal infection. PLoS One, 11(4), e0152908. https://doi.org/10.1371/journal.pone.0152908
  • Cory, J. S., & Ericsson, J. D. (2010). Fungal entomopathogens in a tritrophic context. BioControl, 55(1), 75–88. https://doi.org/10.1007/s10526-009-9247-4
  • Costa, S. D., & Gaugler, R. (1989). Sensitivity of Beauveria bassiana to solanine and tomatine: Plant defensive chemicals inhibit an insect pathogen. Journal of Chemical Ecology, 15(2), 697–706. https://doi.org/10.1007/BF01014712
  • Dara, S. K. (2019). Non-entomopathogenic roles of entomopathogenic fungi in promoting plant health and growth. Insects, 10(9), 277. https://doi.org/10.3390/insects10090277
  • Dowd, P. F. (1988). Toxicological and biochemical interactions of the fungal metabolites fusaric acid and kojic acid with xenobiotics in Heliothis zea (F.) and Spodoptera frugiperda (J.E. Smith). Pesticide Biochemistry and Physiology, 32(2), 123–134. https://doi.org/10.1016/0048-3575(88)90005-3
  • Dowd, P. F. (2021). Enhanced rates of lethality to fall armyworms (Spodoptera fruigperda) after association of Beauveria bassiana strain Ant 03 with sweet corn leaves. Biocontrol Science and Technology, https://doi.org/10.1080/09583157.2021.1895071
  • Dowd, P. F., & Johnson, E. T. (2016). Maize peroxidase Px5 has a highly conserved sequence in inbreds resistant to mycotoxin producing fungi, which enhances fungal and insect resistance. Journal of Plant Science, 129(1), 13–20. https://doi.org/10.1007/S10265-015-0770-3
  • Dowd, P. F., & Johnson, E. T. (2019). Enhanced insect and fungal resistance of maize callus transgenically expressing a maize E2F regulatory gene. Agri Gene, 12, 100086. https://doi.org/10.1016/j.aggene.2019.100086
  • Dowd, P. F., & Johnson, E. T. (2020). Transgenic expression of a previously uncharacterized maize AIL1 gene in maize callus increases resistance to multiple maize fungal and insect pests. Plant Gene, 23, 100235. https://doi.org/10.1026/j.plgene.2020.100235
  • Dowd, P. F., Johnson, E. T., & Pinkerton, T. S. (2007). Oral toxicity of β-N-acetyl hexosaminidase to insects. Journal of Agricultural and Food Chemistry, 55(9), 3421–3428. https://doi.org/10.1021/jf063562w
  • Dowd, P. F., Johnson, E. T., & Price, N. (2012). Enhanced pest resistance of maize leaves expressing monocot crop plant-derived ribosome inactivating protein and agglutinin. Journal of Agricultural and Food Chemistry, 60(43), 10768–10775. https://doi.org/10.1021/jf3041337
  • Dowd, P. F., Naumann, T. A., Johnson, E. T., & Price, N. P. (2019a). A maize hydrolase with activity against maize insect and fungal pests. Plant Gene, 21. https://doi.org/10.1016/j.plgene.2019.100214
  • Dowd, P. F., Naumann, T. A., Price, N. P., & Johnson, E. T. (2019b). Identification of a maize (Zea mays) chitinase allele sequence suitable for a role in ear rot fungal resistance. Agri Gene, 7, 15–22. https://doi.org/10.1016/j.aggene.2017.10.001
  • Dowd, P. F., Vega, F. E., Nelsen, T. C., & Richard, J. L. (1998). Dusky sap beetle mediated dispersal of Bacillus subtilis to inhibit Aspergillus flavus and aflatoxin production in maize Zea mays L. Biocontrol Science and Technology, 8(2), 221–235. https://doi.org/10.1080/09583159830298
  • Fürstenberg-Hägg, J., Zagrobelny, M., & Bak, S. (2013). Plant defense against insect herbivores. International Journal of Molecular Sciences, 14(5), 10242–10297. https://doi.org/10.3390/ijms140510242
  • Gailpa, D. S., & Miedaner, T. (2019). Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: Methods, advances and prospects. Theoretical and Applied Genetics, 132(10), 2721–2739. https://doi.org/10.1007/s00122-019-03412-2
  • Hare, J. D., & Andreadis, T. G. (1983). Variation in the susceptibility of Leptinotarsa decimlineata (Coleoptera: Chrysomelidae) when reared on different host plants to the fungal pathogen, Beauveria bassiana in the field and laboratory. Environmental Entomology, 12(6), 1892–1897. https://doi.org/10.1093/ee/12.6.1892
  • Hum-Musser, S., Allen, E., Roy, R., & Musser, R. (2019). Induced defenses increase caterpillar pathology to a fungus. In: National Meeting Entomological Society of America. Poster #D3399.
  • Islam, M. T., & Omar, D. B. (2012). Combined effect of Beauveria bassiana with neem on virulence of insect in case of two application approaches. Journal of Animal and Plant Science, 22(1), 77–82.
  • Jaronski, S. T. (2010). Ecological factors in the inundative use of fungal entomopathogens. BioControl, 55(1), 159–185. https://doi.org/10.1007/s10526-009-9248-3
  • Johnson, E. T., Skory, C., & Dowd, P. F. (2014). Identification of a bioactive Bowman-Birk inhibitor from an insect resistant early maize inbred. Journal of Agricultural and Food Chemistry, 62(24), 5458–5465. https://doi.org/10.1021/jf501396q
  • Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Patholology, 132, 1–41. https://doi.org/10.1016/j.jip.2015.07.009
  • Mascarin, G. M., & Jaronski, S. T. (2016). The production and uses of Beauveria bassiana as a microbial insecticide. World Journal of Microbiology and Biotechnology, 32(11), 177. https://doi.org/10.1007/s11274-016-2131-3
  • McKee, R. K. (1959). Factors affecting the toxicity of solanine and related alkaloids to Fusarium caeruleum. Journal of General Microbiology, 20(3), 686–696. https://doi.org/10.1099/00221287-20-3-686
  • Ortiz-Urquiza, A., & Keyhani, N. (2016). Molecular genetics of Beauveria bassiana infection of insects. Advances in Genetics, 94, 165–249. https://doi.org/10.1016/bs.adgen.2015.11.003
  • Qiu, Y., Cooper, J., Kaiser, C., Wisser, R., Mideros, S. X., & Jamann, T. M. (2020). Identification of loci that confer resistance to bacterial and fungal diseases of maize. Genes Genomics Genetics, 10(8), 2819–2828. https://doi.org/10.1534/g3.120.401104
  • Ramos, Y., Taibo, A. D., Jiménez, J. A., & Portal, O. (2020). Endophytic establishment of Beauveria bassiana and Metarhizium anisopliae in maize plants and its effect against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) larvae. Egyptian Journal of Biological Pest Control, 30(20). https://doi.org/10.1186/s41938-020-00223-2
  • Ramoska, W. A., & Todd, T. (1985). Variation in efficacy and viability of Beauveria bassiana in the chinch bug (Hemiptera: Lygaeidae) as a result of feeding activity on selected host plants. Environmental Entomology, 14(2), 146–148. https://doi.org/10.1093/ee/14.2.146
  • Renuka, S., Ramanujam, B., & Poornesha, B. (2016). Endophytic ability of different isolates of entomopathogenic fungi (Beauveria bassiana) (Balsamo) Vuillemine in stem and leaf tissues of maize (Zea mays L). Indian Journal of Microbiology, 56(2), 126–133. https://doi.org/10.1007/s12088-016-0574-8
  • Smith, C. A., & MacHardy, W. E. (1982). The significance of tomatine in the host response of susceptible and resistant tomato isolates infected with two races of Fusarium oxysporum f. sp. lycopersici. Phytopathology, 72(4), 415–419. https://doi.org/10.1094/Phyto-72-415
  • Tall, S., & Meyling, N. V. (2017). Probiotics for plants? Growth promotion by the entomopathogenic fungus Beauveria bassiana depends on nutrient availability. Microbiology Ecology, 76(4), 1002–1008. https://doi.org/10.1007/s00248-018-1180-6
  • Van der Niet, T., Peakall, R., & Johnson, S. D. (2014). Pollinator-driven ecological speciation in plants: New evidence and future perspectives. Annals of Botany, 113(2), 199–211. https://doi.org/10.1093/aob/mct290
  • Vega, F. E. (2018). The use of fungal entomopathogens as endophytes in biological control: A review. Mycologia, 110(1), 4–30. https://doi.org/10.1080/00275514.2017.1418578
  • Wraight, S. P., Ramos, M. E., Avery, P. B., Jaronski, S. T., & Vandenberg, J. D. (2010). Comparative virulence of Beauveria bassiana isolates against lepidopterous pests of vegetable crops. Journal of Invertebrate Pathology, 103(3), 186–199. https://doi.org/10.1016/j.jip.2010.01.001
  • Xiang, K., Zhang, S. M., Reid, L. M., Zhu, X. Y., Yuan, G. S., & Pan, G. T. (2010). A meta-analysis of QTL associated with ear rot resistance in maize. Maydica, 55(3/4), 281–290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.