1,844
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Fumigation of three major soil pests (Agriotes lineatus, Diabrotica virgifera virgifera, Phyllopertha horticola) with 3-octanone and 1-octen-3-ol enantiomers

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 863-876 | Received 25 Oct 2021, Accepted 20 Mar 2022, Published online: 03 Apr 2022

References

  • Ajwa, H. A., Trout, T., Mueller, J., Wilhelm, S., Nelson, S. D., Soppe, R., & Shatley, D. (2002). Application of alternative fumigants through drip irrigation systems. Phytopathology®, 92(12), 1349–1355. https://doi.org/10.1094/PHYTO.2002.92.12.1349
  • Anderson, J. A., Mickelson, J., Challender, M., Moellring, E., Sult, T., TeRonde, S., Walker, C., Wang, Y., & Maxwell, C. A. (2020). Agronomic and compositional assessment of genetically modified DP23211 maize for corn rootworm control. GM Crops & Food, 11(4), 206–214. https://doi.org/10.1080/21645698.2020.1770556
  • Antwi, F. B., Shrestha, G., Reddy, G. V. P., & Jaronski, S. T. (2017). Entomopathogens in conjunction with imidacloprid could be used to manage wireworms (Coleoptera: Elateridae) on spring wheat. The Canadian Entomologist, 150(1), 124–139. https://doi.org/10.4039/tce.2017.58
  • Bažok, R., Lemić, D., Chiarini, F., & Furlan, L. (2021). Western corn rootworm (Diabrotica virgifera virgifera LeConte) in Europe : Current status and sustainable pest management. Insects, 12(195), 195–126. https://doi.org/10.3390/insects12030195
  • Benjamin, E. O., Grabenweger, G., Strasser, H., & Wesseler, J. H. (2018). The environmental and economic benefits of biological control of western corn rootworm Diabrotica virgifera virgifera and wireworms Agriotes spp. In maize and potatoes for selected European countries. Journal of Plant Diseases and Protection, 125, 273–285. https://doi.org/10.1007/s41348-018-0156-6
  • Bennett, J. W., & Inamdar, A. A. (2015). Are some fungal volatile organic compounds (VOCs) mycotoxins? Toxins, 7(9), 3785–3804. https://doi.org/10.3390/toxins7093785
  • Bojke, A., Tkaczuk, C., Stepnowski, P., & Gołębiowski, M. (2018). Comparison of volatile compounds released by entomopathogenic fungi. Microbiological Research, 214, 129–136. https://doi.org/10.1016/j.micres.2018.06.011
  • Brennan, R. J. B., Glaze-Corcoran, S., Wick, R., & Hashemi, M. (2020). Biofumigation: An alternative strategy for the control of plant parasitic nematodes. Journal of Integrative Agriculture, 19(7), 1680–1690. https://doi.org/10.1016/S2095-3119(19)62817-0
  • Butt, T. M., Coates, C. J., Dubovskiy, I. M., & Ratcliffe, N. A. (2016). Entomopathogenic fungi : New insights into host - pathogen interactions. In Advances in Genetics, 94, 1–58. https://doi.org/10.1016/bs.adgen.2016.01.006
  • Cui, K., Zhang, L., He, L., Zhang, Z., Zhang, T., Mu, W., Lin, J., & Liu, F. (2021). Toxicological effects of the fungal volatile compound 1-octen-3-ol against the red flour beetle, Tribolium castaneum (Herbst). Ecotoxicology and Environmental Safety, 208, 111597–111599. https://doi.org/10.1016/j.ecoenv.2020.111597
  • Davis, T. S., Crippen, T. L., Hofstetter, R. W., & Tomberlin, J. K. (2013). Microbial volatile emissions as insect semiochemicals. Journal of Chemical Ecology, 39(7), 840–859. https://doi.org/10.1007/s10886-013-0306-z
  • Dedryver, C.-A., Robin, N., Taupin, P., & Thibord, J.-B. (2009). Lutte contre les taupins : Etat des recherches et des connaissances techniques en France et dans l’U.E.
  • Dhaliwal, G. S., Jindal, V., & Mohindru, B. (2015). Crop losses due to insect pests: Global and Indian scenario. Indian Journal of Entomology, 77(2), 165. https://doi.org/10.5958/0974-8172.2015.00033.4
  • Duniway, J. M. (2002). Status of chemical alternatives to methyl bromide for pre-plant fumigation of soil. Phytopathology®, 92(12), 1337–1343. https://doi.org/10.1094/PHYTO.2002.92.12.1337
  • Dutta, T. K., Khan, M. R., & Phani, V. (2019). Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Current Plant Biology, 17, 17–32. https://doi.org/10.1016/j.cpb.2019.02.001
  • Gassmann, A. J. (2021). Resistance to bt maize by western corn rootworm: Effects of pest biology, the pest–crop interaction and the agricultural landscape on resistance. Insects, 12(2), 136–116. https://doi.org/10.3390/insects12020136
  • Goring, C. A. I. (1962). Theory and principles of soil fumigation. Adv. Pest Control Res, 5(1), 47–84.
  • Hall, D. R., Beevor, P. S., Cork, A., Nesbitt, B. F., & Vale, G. A. (1984). 1-Octen-3-ol. A potent olfactory stimulant and attractant for tsetse isolated from cattle odours. International Journal of Tropical Insect Science, 5(05), 335–339. https://doi.org/10.1017/S1742758400008626
  • Hann, P., Trska, C., Wechselberger, K. F., Eitzinger, J., & Kromp, B. (2015). Phyllopertha horticola (Coleoptera: Scarabaeidae) larvae in eastern Austrian mountainous grasslands and the associated damage risk related to soil, topography and management. SpringerPlus, 4(1), 1–15. https://doi.org/10.1186/s40064-015-0918-6
  • Hartley, G. S., & Audus, L. J. (1964). Herbicide behavior in the soil. The Physiology and Biochemistry of Herbicides, 111–161.
  • Herrera, J. M., Pizzolitto, R. P., Zunino, M. P., Dambolena, J. S., & Zygadlo, J. A. (2015). Effect of fungal volatile organic compounds on a fungus and an insect that damage stored maize. Journal of Stored Products Research, 62, 74–80. https://doi.org/10.1016/j.jspr.2015.04.006
  • Hummadi, E. H., Dearden, A., Generalovic, T., Clunie, B., Harrott, A., Cetin, Y., Demirbek, M., Khoja, S., Eastwood, D., Dudley, E., Hazir, S., Touray, M., Ulug, D., Hazal Gulsen, S., Cimen, H., & Butt, T. (2021). Volatile organic compounds of Metarhizium brunneum influence the efficacy of entomopathogenic nematodes in insect control. Biological Control, 155, 104527–104512. https://doi.org/10.1016/j.biocontrol.2020.104527
  • Işikber, A. A., & Öztekin, S. (2009). Comparison of susceptibility of two stored-product insects, Ephestia kuehniella Zeller and Tribolium confusum du Val to gaseous ozone. Journal of Stored Products Research, 45(3), 159–164. https://doi.org/10.1016/j.jspr.2008.12.003
  • Kabaluk, J. T., & Ericsson, J. D. (2007). Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agronomy Journal, 99(5), 1377–1381. https://doi.org/10.2134/agronj2007.0017N
  • Khoja, S., Eltayef, K. M., Baxter, I., Bull, J. C., Loveridge, E. J., & Butt, T. (2019). Fungal volatile organic compounds show promise as potent molluscicides. Pest Management Science, 75(12), 3392–3404. https://doi.org/10.1002/ps.5578
  • Khoja, S., Eltayef, K. M., Baxter, I., Myrta, A., Bull, J. C., & Butt, T. (2021). Volatiles of the entomopathogenic fungus, Metarhizium brunneum, attract and kill plant parasitic nematodes. Biological Control, 152, 104472. https://doi.org/10.1016/j.biocontrol.2020.104472
  • Kline, D. L., Allan, S. A., Bernier, U. R., & Welch, C. H. (2007). Evaluation of the enantiomers of 1-octen-3-ol and 1-octyn-3-ol as attractants for mosquitoes associated with a freshwater swamp in Florida, USA. Medical and Veterinary Entomology, 21(4), 323–331. https://doi.org/10.1111/j.1365-2915.2007.00697.x
  • Lembright, H. W. (1990). Soil fumigation: Principles and application technology. Journal of Nematology, 22(4S), 632–644. http://www.ncbi.nlm.nih.gov/pubmed/19287772%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid = PMC2619113
  • Mohamed, S., AbdEl-kareem, S., Massoud, S., & Abdallah, M. (2020). The role of soil moisture regime in enhancing biofumigation efficacy against Meloidogyne Incognita (Kofoid and White) Chitwood on tomato. Sinai Journal of Applied Sciences, 9(2), 143–156. https://doi.org/10.21608/sinjas.2020.88765
  • Morris, E. K., Fletcher, R., & Veresoglou, S. D. (2020). Effective methods of biofumigation: A meta-analysis. Plant and Soil, 446(1), 379–392. https://doi.org/10.1007/s11104-019-04352-y
  • Munneckel, D. E., & Gundy, S. D. V. (1979). Movement of fumigants in soil, dosage responses and differential effects. Annual Review of Phytopathology, 17(1), 405–429. https://doi.org/10.1146/annurev.py.17.090179.002201
  • Ntalli, N., & Caboni, P. (2017). A review of isothiocyanates biofumigation activity on plant parasitic nematodes. Phytochemistry Reviews, 16(5), 827–834. https://doi.org/10.1007/s11101-017-9491-7
  • Oki, D. S., & Giambelluca, T. W. (1987). DBCP, EDB, and TCP contamination of ground water in Hawaii. Ground Water, 25(6), 693–702. https://doi.org/10.1111/j.1745-6584.1987.tb02210.x
  • Oliveira, C. M., Auad, A. M., Mendes, S. M., & Frizzas, M. R. (2014). Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Protection, 56, 50–54. https://doi.org/10.1016/j.cropro.2013.10.022
  • Parker, W. E. (2005). Practical implementation of a wireworm management strategy – lessons from the UK potato industry. Insect Pathogens and Insect Parasitic Nematodes: IOBC Wprs Bulletin, 28(2), 87–90.
  • Pierce, A. M., Pierce, H. D., Borden, J. H., & Oehlschlager, A. C. (1989). Production dynamics of Cucujolide pheromones and identification of 1-Octen-3-ol as a new aggregation pheromone for Oryzaephilus surinamensis and O. mercator (Coleoptera: Cucujidae). Environmental Entomology, 18(5), 747–755. https://doi.org/10.1093/ee/18.5.747
  • Pierce, A. M., Pierce, H. D., Oehlschlager, A. C., & Borden, J. H. (1991). 1-Octen-3-ol, attractive semiochemical for foreign grain beetle, Ahasverus advena (Waltl) (Coleoptera: Cucujidae). Journal of Chemical Ecology, 17(3), 567–580. https://doi.org/10.1007/BF00982127
  • Ramadan, G. R. M., Zhu, K. Y., Abdelgaleil, S. A. M., Shawir, M. S., El-Bakary, A. S., Edde, P. A., & Phillips, T. W. (2020). Ethanedinitrile as a fumigant for Lasioderma serricorne (Coleoptera: Anobiidae), and Rhyzopertha dominica (Coleoptera: Bostrichidae): toxicity and mode of action. Journal of Economic Entomology, 113(3), 1519–1527. https://doi.org/10.1093/jee/toz343
  • Ruzo, L. O. (2006). Physical, chemical and environmental properties of selected chemical alternatives for the pre-plant use of methyl bromide as soil fumigant. Pest Management Science, 62(2), 99–113. https://doi.org/10.1002/ps.1135
  • Taylor, R. W. D. (1994). Methyl bromide – is there any future for this noteworthy fumigant? Journal of Stored Products Research, 30(4), 253–260. https://doi.org/10.1016/S0022-474X(94)90317-4
  • Team, R. C. (2021). R: A Language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
  • Van Herk, W. G., & Vernon, R. S. (2007). Soil bioassay for studying behavioral responses of wireworms (Coleoptera : Elateridae) to insecticide-treated wheat seed. Environmental Entomology, 36(6), 1441–1449. https://doi.org/10.1603/0046-225X(2007)36[1441:SBFSBR]2.0.CO;2
  • Wan, F. H., & Yang, N. W. (2016). Invasion and management of agricultural alien insects in China. Annual Review of Entomology, 61(1), 77–98. https://doi.org/10.1146/annurev-ento-010715-023916
  • Wang, X., Zhang, Y., Cao, A., Xu, J., Fang, W., Yan, D., Li, Y., & Wang, Q. (2021). Effects of soil type, moisture content and organic amendment rate on dimethyl disulfide distribution and persistency in soil. Environmental Pollution, 285, 117198. https://doi.org/10.1016/j.envpol.2021.117198
  • Weisskopf, L., Schulz, S., & Garbeva, P. (2021). Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nature Reviews Microbiology, 19(6), 391–404. https://doi.org/10.1038/s41579-020-00508-1
  • Xu, P., Zhu, F., Buss, G. K., & Leal, W. S. (2015). 1-Octen-3-ol - the attractant that repels. F1000Research, 4, 156–110. https://doi.org/10.12688/f1000research.6646.1
  • Zasada, I. A., Halbrendt, J. M., Kokalis-burelle, N., LaMondia, J., Mckenry, M. V., & Noling, J. W. (2010). Managing nematodes without methyl bromide. Annual Review of Phytopathology, 48(1), 311–328. https://doi.org/10.1146/annurev-phyto-073009-114425