117
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Temporal optimisation of abamectin use on Schinus terebinthifolia used to rear the biological control agent Pseudophilothrips ichini (Thysanoptera: Phlaeothripidae)

ORCID Icon, &
Pages 1065-1073 | Received 29 Sep 2021, Accepted 28 May 2022, Published online: 26 Jun 2022

References

  • Ali, A. D., & Caldwell, D. L. (2017). Management of staining and galling associated with oxhorn bucida trees in Florida. Florida Entomologist, 100, 602–606. https://doi.org/10.1653/024.100.0318
  • Ashtari, S., Sabahi, Q., & Jahromi, K. T. (2018). Evaluation of toxicity of some biocompatible insecticides on Trichogramma brassicae and T. evanescens under laboratory and semi-field conditions. Journal of Crop Protection, 7, 459–469. http://jcp.modares.ac.ir/article-3-21746-en.html
  • Baker, J. R. (1997). Cyclamen mite and broad mite. North Carolina Cooperative Extension Service North Carolina State University: Ornamentals and Turf Insect Notes, 28, 2 pp.
  • Bloomquist, J. R. (1996). Ion channels as targets for insecticides. Annual Review of Entomology, 41(1), 163–190. https://doi.org/10.1146/annurev.en.41.010196.001115
  • Chisholm, I. F., & Lewis, T. (1984). A new look at thrips (Thysanoptera) mouthparts, their action and effects of feeding on plant tissue. Bulletin of Entomological Research, 74(4), 663–675. https://doi.org/10.1017/S0007485300014048
  • Desneux, N., Decourtye, A., & Delpuech, J.-M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52(1), 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440
  • Heming, B. S. (1993). Structure, function, ontogeny, and evolution of feeding in thrips (Thysanoptera). In C. W. Schaefer & R. A. B. Leschen (Eds.), Functional morphology of insect feeding (pp. 3–41). Thomas Say Publications in Entomology, Entomological Society of America.
  • Ismail, M. S. M., Soliman, M. F. M., El Naggar, M. H., & Ghallab, M. M. (2007). Acaricidal activity of spinosad and abamectin against two-spotted spider mites. Experimental and Applied Acarology, 43(2), 129–135. https://doi.org/10.1007/s10493-007-9108-8
  • Jensen, S. E. (2000). Insecticide resistance in the western flower thrips, Frankliniella occidentalis. Integrated Pest Management Reviews, 5(2), 131–146. https://doi.org/10.1023/A:1009600426262
  • Kim, S. H. S., Vandervoort, C., Whalon, M. E., & Wise, J. C. (2014). Transovarial transmission of novaluron in Choristoneura rosaceana (Lepidoptera: Tortricidae). The Canadian Entomologist, 146(3), 347–353. https://doi.org/10.4039/tce.2013.78
  • Kirk, W. D. J. (1995). Feeding behavior and nutritional requirements. In B. L. Parker, M. Skinner, & T. Lewis (Eds.), Thrips biology and management (pp. 21–29). Plenum Press.
  • Longley, M., & Jepson, P. C. (1996). The influence of insecticide residues on primary parasitoid and hyperparasitoid foraging behaviour in the laboratory. Entomologia Experimentalis et Applicata, 81(3), 259–269. https://doi.org/10.1046/j.1570-7458.1996.00095.x
  • MacConnell, J. G., Demchak, R. J., Preiser, F. A., & Dybas, R. A. (1989). Relative stability, toxicity, and penetrability of abamectin and its 8,9-oxide. Journal of Agricultural and Food Chemistry, 37(6), 1498–1501. https://doi.org/10.1021/jf00090a009
  • Mahmoud, H. A., Arief, M. M. H., Nasr, I. N., & Mohammed, I. H. (2010). Residues and half-lives of abamectin, diniconazole and methomyl on and in strawberry under the normal field conditions. Journal of Applied Sciences Research, 6, 932–936.
  • Morse, J. G., Bellows, T. S., & Iwata, Y. (1986). Technique for evaluating residual toxicity of pesticides to motile insects. Journal of Economic Entomology, 79(1), 281–283. https://doi.org/10.1093/jee/79.1.281
  • Mound, L. A. (1971). The feeding apparatus of thrips. Bulletin of Entomological Research, 60(4), 547–548. https://doi.org/10.1017/S0007485300042309
  • Pakyari, H., & Enkegaard, A. (2015). Sublethal and transgenerational effects of abamectin on the biological performance of the predatory thrips Scolothrips longicornis (Thysanoptera: Thripidae). Journal of Economic Entomology, 108(2), 559–565. https://doi.org/10.1093/jee/tou098
  • RCore Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
  • RStudio Team. . (2018). RStudio: Integrated development for R. RStudio, Inc.
  • Said, A. E., Ardi, J., Nasruddin, A. D., Ridwan, M., Mewar, M., Nurias, N., & Nasruddin, A. (2016). Baseline susceptibility of Crotonothrips polyalthiae (Thysanoptera: Phlaeothripidae) to selected insecticides in laboratory. Journal of Entomology, 13(5), 193–198. https://doi.org/10.3923/je.2016.193.198
  • Stark, J. D., & Banks, J. E. (2003). Population-level effects of pesticides and other toxicants on arthropods. Annual Review of Entomology, 48(1), 505–519. https://doi.org/10.1146/annurev.ento.48.091801.112621
  • Tsutsumi, T., Matsuzaki, M., & Haga, K. (1995). Formation of germ cell cluster in tubuliferan thrips (Thysanoptera). International Journal of Insect Morphology and Embryology, 24(3), 287–296. https://doi.org/10.1016/0020-7322(95)00001-K
  • War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S., & Sharma, H. C. (2012). Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior, 7(10), 1306–1320. https://doi.org/10.4161/psb.21663
  • Wheeler, G., & Hernandez, K. (2015). Control of Pseudophilothrips ichini (Thysanoptera: Phlaeothripidae) with acephate to exclude a biological control agent of Schinus terebinthifolia. Biocontrol Science and Technology, 25(2), 163–174. https://doi.org/10.1080/09583157.2014.966060
  • Wheeler, G. S., Jones, E., Broggi, E., & Halbritter, D. (2018). The impact and production of the Brazilian peppertree biological control agent Pseudophilothrips ichini (Thysanoptera: Phlaeothripidae) is affected by the level of host-plant fertilization. Biological Control, 121, 119–128. https://doi.org/10.1016/j.biocontrol.2018.02.014
  • Wheeler, G. S., Manrique, V., Overholt, W. A., McKay, F., & Dyer, K. (2017). Quarantine host range testing of Pseudophilothrips ichini, a potential biological control agent of Brazilian peppertree, Schinus terebinthifolia, in North America and Hawaii. Entomologia Experimentalis et Applicata, 162(2), 204–217. https://doi.org/10.1111/eea.12506
  • Wheeler, G. S., McKay, F., Vitorino, M. D., Manrique, V., Diaz, R., & Overholt, W. A. (2016a). Biological control of the invasive weed Schinus terebinthifolia (Brazilian Peppertree): a review of the project with an update on the proposed agents. Southeastern Naturalist, 15(sp8), 15–34. https://doi.org/10.1656/058.015.sp802
  • Wheeler, G. S., Silverson, N., Dyer, K., & Mc Kay, F. (2016b). Brazilian collections and laboratory biology of a thrips, Pseudophilothrips ichini: A potential biological control agent of the invasive weed, Brazilian peppertree. Florida Entomologist, 99(1), 6–11. https://doi.org/10.1653/024.099.0103

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.