372
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Microbial compost tea properties affect suppression of strawberry grey mould (Botrytis cinerea Pers.)

, , , , &
Pages 1-18 | Received 11 May 2022, Accepted 26 Oct 2022, Published online: 07 Nov 2022

References

  • Adigun, O. A., Nadeem, M., Pham, T. H., Jewell, L. E., Cheema, M., & Thomas, R. (2021). Recent advances in bio-chemical, molecular and physiological aspects of membrane lipid derivatives in plant pathology. Plant Cell and Environment, 44(1), 1–16. https://doi.org/10.1111/pce.13904
  • Basra, P., Alsaadi, A., Bernal-Astrain, G., O’Sullivan, M. L., Hazlett, B., Clarke, L. M., Schoenrock, A., Pitre, S., & Wong, A. (2018). Fitness tradeoffs of antibiotic resistance in extraintestinal pathogenic Escherichia coli. Genome Biology and Evolution, 10(2), 667–679. https://doi.org/10.1093/gbe/evy030
  • Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
  • Clausen, P. T. L. C., Aarestrup, F. M., & Lund, O. (2018). Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics, 19(1), 307. https://doi.org/10.1186/s12859-018-2336-6
  • Cloutier, A., Tran, S., & Avis, T. J. (2020). Suppressive effect of compost bacteria against grey mould and Rhizopus rot on strawberry fruit. Biocontrol Science and Technology, 30(2), 143–159. https://doi.org/10.1080/09583157.2019.1695745
  • Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D. (2012). The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
  • De Corato, U. (2020). Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Science of the Total Environment, 738, 139840. https://doi.org/10.1016/j.scitotenv.2020.139840
  • De Corato, U., Salimbeni, R., De Pretis, A., Patruno, L., Avella, N., Lacolla, G., & Cucci, G. (2018). Microbiota from ‘next-generation green compost’ improves suppressiveness of composted Municipal-Solid-Waste to soil-borne plant pathogens. Biological Control, 124, 1–17. https://doi.org/10.1016/j.biocontrol.2018.05.020
  • de Moura, G. G. D., de Barros, A. V., Machado, F., Martins, A. D., da Silva, C. M., Durango, L. G. C., Forim, M., Alves, E., Pasqual, M., & Doria, J. (2021). Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L. Microbiological Research, 251, 126793. https://doi.org/10.1016/j.micres.2021.126793
  • Dianez, F., Marin, F., Santos, M., Gea, F. J., Navarro, M. J., Pineiro, M., & Gonzalez, J. M. (2018). Genetic analysis and in vitro enzymatic determination of bacterial community in compost teas from different sources. Compost Science & Utilization, 26(4), 256–270. https://doi.org/10.1080/1065657x.2018.1496045
  • Dianez, F., Santos, M., Boix, A., de Cara, M., Trillas, I., Aviles, M., & Tello, J. C. (2006). Grape marc compost tea suppressiveness to plant pathogenic fungi: Role of siderophores. Compost Science & Utilization, 14(1), 48–53. https://doi.org/10.1080/1065657X.2006.10702262
  • Dionne, A., Tweddell, R. J., Antoun, H., & Avis, T. J. (2012). Effect of non-aerated compost teas on damping-off pathogens of tomato. Canadian Journal of Plant Pathology, 34(1), 51–57. https://doi.org/10.1080/07060661.2012.660195
  • Du, N., Shi, L., Yuan, Y., Li, B., Shu, S., Sun, J., & Guo, S. (2016). Proteomic analysis reveals the positive roles of the plant-growth-promoting rhizobacterium NSY50 in the response of cucumber roots to Fusarium oxysporum f. sp. cucumerinum inoculation. Frontiers in Plant Science, 7, 1859. https://doi.org/10.3389/fpls.2016.01859
  • Elias, J. M., Guerrero-Molina, M. F., Martinez-Zamora, M. G., Diaz-Ricci, J. C., & Pedraza, R. O. (2018). Role of ethylene and related gene expression in the interaction between strawberry plants and the plant growth-promoting bacterium Azospirillum brasilense. Plant Biology, 20(3), 490–496. https://doi.org/10.1111/plb.12697
  • El-Masry, M. H., Khalil, A. I., Hassouna, M. S., & Ibrahim, H. A. H. (2002). In situ and in vitro suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi. World Journal of Microbiology & Biotechnology, 18(6), 551–558. https://doi.org/10.1023/a:1016302729218
  • Falardeau, J., Wise, C., Novitsky, L., & Avis, T. J. (2013). Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. Journal of Chemical Ecology, 39(7), 869–878. https://doi.org/10.1007/s10886-013-0319-7
  • Fan, B., Blom, J., Klenk, H.-P., & Borriss, R. (2017). Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Frontiers in Microbiology, 8, 22. https://doi.org/10.3389/fmicb.2017.00022
  • Grady, E. N., MacDonald, J., Ho, M. T., Weselowski, B., McDowell, T., Solomon, O., Renaud, J., & Yuan, Z.-C. (2019). Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6. BMC Microbiology, 19(1), 5. https://doi.org/10.1186/s12866-018-1380-8
  • Gross, H., & Loper, J. E. (2009). Genomics of secondary metabolite production by Pseudomonas spp. Natural Product Reports, 26(11), 1408–1446. https://doi.org/10.1039/B817075B
  • Guetsky, R., Shtienberg, D., Elad, Y., & Dinoor, A. (2001). Combining biocontrol agents to reduce the variability of biological control. Phytopathology, 91(7), 621–627. https://doi.org/10.1094/phyto.2001.91.7.621
  • Hamdache, A., Lamarti, A., Aleu, J., & Collado, I. G. (2011). Non-peptide metabolites from the genus Bacillus. Journal of Natural Products, 74(4), 893–899. https://doi.org/10.1021/np100853e
  • Hang, N. T. T., Jin, K. Y., Oh, S.-O., Kim, G., & Jae-Seoun, H. U. R. (2005). Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. Plant Pathology Journal, 21(1), 59–63. https://doi.org/10.5423/PPJ.2005.21.1.059
  • Hasman, H., Saputra, D., Sicheritz-Ponten, T., Lund, O., Svendsen, C. A., Frimodt-Moller, N., & Aarestrup, F. M. (2014). Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. Journal of Clinical Microbiology, 52(1), 139–146. https://doi.org/10.1128/jcm.02452-13
  • Kohl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10, 845. https://doi.org/10.3389/fpls.2019.00845
  • Kone, S. B., Dionne, A., Tweddell, R. J., Antoun, H., & Avis, T. J. (2010). Suppressive effect of non-aerated compost teas on foliar fungal pathogens of tomato. Biological Control, 52(2), 167–173. https://doi.org/10.1016/j.biocontrol.2009.10.018
  • Kurniawan, O., Wilson, K., Mohamed, R., & Avis, T. J. (2018). Bacillus and Pseudomonas spp. provide antifungal activity against gray mold and Alternaria rot on blueberry fruit. Biological Control, 126, 136–141. https://doi.org/10.1016/j.biocontrol.2018.08.001
  • Larsen, M. V., Cosentino, S., Lukjancenko, O., Saputra, D., Rasmussen, S., Hasman, H., Sicheritz-Ponten, T., Aarestrup, F. M., Ussery, D. W., & Lund, O. (2014). Benchmarking of methods for genomic taxonomy. Journal of Clinical Microbiology, 52(5), 1529–1539. https://doi.org/10.1128/jcm.02981-13
  • Lee, I., Chalita, M., Ha, S.-M., Na, S.-I., Yoon, S.-H., & Chun, J. (2017). Contest16s: An algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. International Journal of Systematic and Evolutionary Microbiology, 67(6), 2053–2057. https://doi.org/10.1099/ijsem.0.001872
  • Levy, N. O., Harel, Y. M., Haile, Z. M., Elad, Y., Rav-David, E., Jurkevitch, E., & Katan, J. (2015). Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum. Plant Pathology, 64(2), 365–374. https://doi.org/10.1111/ppa.12255
  • Li, M. S. M., Piccoli, D. A., McDowell, T., MacDonald, J., Renaud, J., & Yuan, Z.-C. (2021). Evaluating the biocontrol potential of Canadian strain Bacillus velezensis 1B-23 via its surfactin production at various pHs and temperatures. BMC Biotechnology, 21(1), 31. https://doi.org/10.1186/s12896-021-00690-x
  • Li, X., Wang, X., Shi, X., Wang, Q., Li, X., & Zhang, S. (2020). Compost tea-mediated induction of resistance in biocontrol of strawberry Verticillium wilt. Journal of Plant Diseases and Protection, 127(2), 257–268. https://doi.org/10.1007/s41348-019-00290-0
  • Litterick, A. M., Harrier, L., Wallace, P., Watson, C. A., & Wood, M. (2004). The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production – a review. Critical Reviews in Plant Sciences, 23(6), 453–479. https://doi.org/10.1080/07352680490886815
  • Marin, F., Santos, M., Dianez, F., Carretero, F., Gea, F. J., Yau, J. A., & Navarro, M. J. (2013). Characters of compost teas from different sources and their suppressive effect on fungal phytopathogens. World Journal of Microbiology & Biotechnology, 29(8), 1371–1382. https://doi.org/10.1007/s11274-013-1300-x
  • Mohamed, R., Groulx, E., Defilippi, S., Erak, T., Tambong, J. T., Tweddell, R. J., Tsopmo, A., & Avis, T. J. (2017). Physiological and molecular characterization of compost bacteria antagonistic to soil-borne plant pathogens. Canadian Journal of Microbiology, 63(5), 411–426. https://doi.org/10.1139/cjm-2016-0599
  • Mulet, M., Lalucat, J., & Garcia-Valdes, E. (2010). DNA sequence-based analysis of the Pseudomonas species. Environmental Microbiology, 12(6), 1513–1530. https://doi.org/10.1111/j.1462-2920.2010.02181.x
  • Naidu, Y., Meon, S., Kadir, J., & Siddiqui, Y. (2010). Microbial starter for the enhancement of biological activity of compost tea. International Journal of Agriculture and Biology, 12(1), 51–56.
  • On, A., Wong, F., Ko, Q., Tweddell, R. J., Antoun, H., & Avis, T. J. (2015). Antifungal effects of compost tea microorganisms on tomato pathogens. Biological Control, 80, 63–69. https://doi.org/10.1016/j.biocontrol.2014.09.017
  • Palmer, A. K., Evans, K. J., & Metcalf, D. A. (2010). Characters of aerated compost tea from immature compost that limit colonization of bean leaflets by Botrytis cinerea. Journal of Applied Microbiology, 109(5), 1619–1631. https://doi.org/10.1111/j.1365-2672.2010.04794.x
  • Pane, C., Celano, G., Villecco, D., & Zaccardelli, M. (2012). Control of Botrytis cinerea, Alternaria alternata and Pyrenochaeta lycopersici on tomato with whey compost-tea applications. Crop Protection, 38, 80–86. https://doi.org/10.1016/j.cropro.2012.03.012
  • Pane, C., Celano, G., & Zaccardeli, M. (2014). Metabolic patterns of bacterial communities in aerobic compost teas associated with potential biocontrol of soilborne plant diseases. Phytopathologia Mediterranea, 53(2), 277–286. https://doi.org/10.14601/Phytopathol_Mediterr-13363
  • Parikka, P. K., Vestberg, M., Karhu, S. T., Haikonen, T., & Hautsalo, J. (2017). Possibilities for biological control of red core (Phytophthora fragariae). Acta Horticulturae, 1156, 751–755. https://doi.org/10.17660/ActaHortic.2017.1156.110
  • Petrasch, S., Knapp, S. J., Van Kan, J. A. L., & Blanco-Ulate, B. (2019). Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular Plant Pathology, 20(6), 877–892. https://doi.org/10.1111/mpp.12794
  • Plesken, C., Weber, R. W. S., Rupp, S., Leroch, M., & Hahn, M. (2015). Botrytis pseudocinerea is a significant pathogen of several crop plants but susceptible to displacement by fungicide-resistant B. cinerea strains. Applied and Environmental Microbiology, 81(20), 7048–7056. https://doi.org/10.1128/aem.01719-15
  • Raaijmakers, J. M., de Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiology Reviews, 34(6), 1037–1062. https://doi.org/10.1111/j.1574-6976.2010.00221.x
  • Ramlawi, S., Chiu, J. O., Cloutier, A., & Avis, T. J. (2021). Suppression of Fusarium dry rot of potato using beneficial bacterial treatments. Journal of Plant Pathology, 103(1), 269–281. https://doi.org/10.1007/s42161-020-00731-y
  • Robinson-Boyer, L., Jeger, M. J., Xu, X.-M., & Jeffries, P. (2009). Management of strawberry grey mould using mixtures of biocontrol agents with different mechanisms of action. Biocontrol Science and Technology, 19(10), 1051–1065. https://doi.org/10.1080/09583150903289105
  • Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., & Nelson, A. (2019). The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3(3), 430–439. https://doi.org/10.1038/s41559-018-0793-y
  • Scheuerell, S., & Mahaffee, W. (2002). Compost tea: Principles and prospects for plant disease control. Compost Science & Utilization, 10(4), 313–338. https://doi.org/10.1080/1065657X.2002.10702095
  • St Martin, C. C. G., Brathwaite, R. A. I. (2012). Compost and compost tea: Principles and prospects as substrates and soil-borne disease management strategies in soil-less vegetable production. Biological Agriculture & Horticulture, 28(1), 1–33. https://doi.org/10.1080/01448765.2012.671516
  • Tournas, V. H., & Katsoudas, E. (2005). Mould and yeast flora in fresh berries, grapes and citrus fruits. International Journal of Food Microbiology, 105(1), 11–17. https://doi.org/10.1016/j.ijfoodmicro.2005.05.002
  • van Baarlen, P., Woltering, E. J., Staats, M., & van Kan, J. A. L. (2007). Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: An important role for cell death control. Molecular Plant Pathology, 8(1), 41–54. https://doi.org/10.1111/j.1364-3703.2006.00367.x
  • Vicente-Hernandez, A., Salgado-Garciglia, R., Valencia-Cantero, E., Ramirez-Ordorica, A., Hernandez-Garcia, A., Garcia-Juarez, P., & Macias-Rodriguez, L. (2019). Bacillus methylotrophicus M4-96 stimulates the growth of strawberry (Fragaria x ananassa ‘Aromas’) plants in vitro and slows Botrytis cinerea infection by two different methods of interaction. Journal of Plant Growth Regulation, 38(3), 765–777. https://doi.org/10.1007/s00344-018-9888-6
  • Villecco, D., Pane, C., Ronga, D., & Zaccardelli, M. (2020). Enhancing sustainability of tomato, pepper and melon nursery production systems by using compost tea spray applications. Agronomy, 10(9), 1336. https://doi.org/10.3390/agronomy10091336
  • Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267. https://doi.org/10.1128/aem.00062-07
  • Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Computational Biology, 13(6), e1005595. https://doi.org/10.1371/journal.pcbi.1005595
  • Wise, C., Novitsky, L., Tsopmo, A., & Avis, T. J. (2012). Production and antimicrobial activity of 3-hydroxypropionaldehyde from Bacillus subtilis strain CU12. Journal of Chemical Ecology, 38(12), 1521–1527. https://doi.org/10.1007/s10886-012-0219-2
  • Zhang, Y., Wang, X., Liang, S., Shi, Y., Chen, X., Liu, J., & Wang, A. (2021). Fermentation optimization, fungistatic effects and tomato growth promotion of four biocontrol bacterial strains. Agriculture, 11(7), 686. https://doi.org/10.3390/agriculture11070686
  • Zou, X., Wei, Y., Dai, K., Xu, F., Wang, H., & Shao, X. (2021). Yeasts from intertidal zone marine sediment demonstrate antagonistic activities against Botrytis cinerea in vitro and in strawberry fruit. Biological Control, 158, 104612. https://doi.org/10.1016/j.biocontrol.2021.104612
  • Zouari, I., Masmoudi, F., Medhioub, K., Tounsi, S., & Trigui, M. (2020). Biocontrol and plant growth-promoting potentiality of bacteria isolated from compost extract. Antonie Van Leeuwenhoek, 113(12), 2107–2122. https://doi.org/10.1007/s10482-020-01481-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.