154
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Biological control of Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. by epiphytic bacteria isolated from Vitis vinifera (cv Thompson Seedless) grape berry

, , &
Pages 173-189 | Received 05 Jul 2022, Accepted 08 Jan 2023, Published online: 19 Jan 2023

References

  • Adrien, A. A., Arias, A. A., Grégory, H., Maryline, C., Stéphane, D., & Marc, O. (2021). The use of Bacillus spp. as bacterial biocontrol agents to control plant diseases. In: Burleigh Dodds Series in Agricultural Science, 13, 1–54. https://doi.org/10.19103/AS.2021.0093.10
  • Alvindia, D. D. G., & Mangoba, M. A. A. (2020). Biological activities of Moringa oleifera Lam. against anthracnose of mango caused by Colletotrichum gloeosporioides Penz. Archives of Phytopathology and Plant Protection, 53(13–14), 659–672. https://doi.org/10.1080/03235408.2020.1791479
  • Calderone, F., Vitale, A., Panebianco, S., Lombardo, M. F., & Cirvilleri, G. (2022). COS-OGA applications in Organic Vineyard manage major airborne diseases and maintain postharvest quality of wine grapes. Plants, 11(13), 1763. https://doi.org/10.3390/plants11131763
  • Chen, Y., Yan, F., Chai, Y., Liu, H., Kolter, R., Losick, R., & Guo, J.-H. (2013). Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology, 15(3), 848–864. https://doi.org/10.1111/j.1462-2920.2012.02860.x
  • Choub, V., Ajuna, H. B., Won, S.-J., Moon, J.-H., Choi, S.-I., Maung, C. E. H., Kim, C.-W., & Ahn, Y. S. (2021). Antifungal activity of bacillus velezensis ce 100 against anthracnose disease (Colletotrichum gloeosporioides) and growth promotion of walnut (juglans regia l.) trees. International Journal of Molecular Sciences, 22(19), 10438. https://doi.org/10.3390/ijms2219104
  • Diguță, C. F., Matei, F., & Cornea, C. P. (2016). Biocontrol perspectives of Aspergillus carbonarius, Botrytis cinerea and Pencillium expansum on grapes using epiphytic bacteria isolated from Romanian vineyards. Romanian Biotechnological Letters, 21(1), 11126–111132. 166224136.
  • El-Katatny, M. H., Gudelj, M., Robra, K.-H., Elnaghy, M. A., & Gübitz, G. M. (2001). Characterization of a chitinase and an endo-β-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Applied Microbiology Biotechnology, 56(1–2), 137–143. https://doi.org/10.1007/s002530100646
  • El-Shanshoury, H., El-Shanshoury, G., & Abaza, A. (2019). Evaluation of low dose ionizing radiation effect on some blood components in animal model. Journal of Radiation Research and Applied Sciences, 9(3), 282–293. https://doi.org/10.1016/j.jrras.2016.01.001
  • Fiddaman, P. J., & Rossall, S. (1993). The production of antifungal volatiles by Bacillus subtilis. Journal of Applied Bacteriology, 74(2), 119–126. https://doi.org/10.1111/j.1365-2672.1993.tb03004.x
  • Furuya, S., Mochizuki, M., Aoki, Y., Kobayashi, H., Takayanagi, T., Shimizu, M., & Suzuki, S. (2011). Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases. Biocontrol Science and Technology, 21(6), 705–720. https://doi.org/10.1080/09583157.2011.574208
  • Gao, H., Li, P., Xu, X., Zeng, Q., & Guan, W. (2018). Research on volatile organic compounds from Bacillus subtilis CF-3: Biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation. Frontiers in Microbiology, 9, 456. https://doi.org/10.3389/fmicb.2018.00456
  • Hamdache, A., Ezziyyani, M., & Lamarti, A. (2018). Effect of preventive and simultaneous inoculations of Bacillus amyloliquefaciens (Fukumoto) strains on conidial germination of Botrytis cinerea Pers.:Fr. Anales de Biología, 40(40), 65–72. https://doi.org/10.6018/analesbio.40.08
  • Huang, H., Tian, C., Huang, Y., & Huang, H. (2020). Biological control of poplar anthracnose caused by Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. Egyptian Journal of Biological Pest Control, 30(1), 104. https://doi.org/10.1186/s41938-020-00301-5
  • Jinal, N. H., & Amaresan, N. (2020). Evaluation of biocontrol Bacillus species on plant growth promotion and systemic-induced resistant potential against bacterial and fungal wilt-causing pathogens. Archives of Microbiology, 202(7), 1785–1794. https://doi.org/10.1007/s00203-020-01891-2
  • Keiji, J., Travis, G., Paloma, P.-T., Ángel, S.-M., Yuki, A., Ayodeji, D.-A., Adrie, W., Misghina, G. T., Moshe, S., Claudia, P. S., Jader, G. B., Raul, O.-H., Marco, N., Johan, R., Ricardo, A., Socorro, M., Maria, J. D., & German, T. (2022). Application of biostimulant products and biological control agents in sustainable viticulture: A review. Frontiers in Plant Science, 13, 932311. https://doi.org/10.3389/fpls.2022.932311
  • Kimaru, S. K., Monda, E., Cheruiyot, R. C., Mbaka, J., & Alakonya, A. (2018). Sensitivity of Colletotrichum gloeosporioides Isolates from diseased Avocado fruits to selected Fungicides in Kenya. Advances in Agriculture, 2018(1), 1–6. https://doi.org/10.1155/2018/3567161
  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275. PMID: 14907713. https://doi.org/10.1016/S0021-9258(19)52451-6
  • Martins, G., Lauga, B., Miot-Sertier, C., Mercier, A., Lonvaud, A., Soulas, M. L., Soulas, G., & Masneuf-Pomarede, I. (2013). Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevine plants grown, and their relations. PLoS One, 8(8), e73013. https://doi.org/10.1371/journal.pone.0073013
  • Miller, G. L. (1959). Use of Dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030
  • Mochizuki, M., Yamamoto, S., Aoki, Y., & Suzuki, S. (2012). Isolation and characterisation of Bacillus amyloliquefaciens S13-3 as a biological control agent for anthracnose caused by Colletotrichum gloeosporioides. Biocontrol Science and Technology, 22(6), 697–709. https://doi.org/10.1080/09583157.2012.679644
  • Moreno-Velandia, C. A., Izquierdo-García, L. F., Ongena, M., Kloepper, J. W., & Cotes, A. M. (2018). Soil sterilization, pathogen and antagonist concentration affect biological control of Fusarium wilt of cape gooseberry by Bacillus velezensis Bs006. Plant and Soil, 435(1–2), 39–55. https://doi.org/10.1007/s11104-018-3866-4
  • Nam, M. H., Kim, H. S., Lee, H. D., Whang, K. S., & Kim, H. G. (2014). Biological control of anthracnose crown rot in strawberry using Bacillus velezensis NSB-1. Acta Horticulturae, 1049(1049), 685–688. https://doi.org/10.17660/ActaHortic.2014.1049.106
  • Navarro-Herrera, Y. Y., & Ortíz-Moreno, M. L. (2020). Yeast strains with antagonist activity against Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. and their phenotypic characterization. Egyptian Journal of Biological Pest Control, 30(1), 29. https://doi.org/10.1186/s41938-020-00231-2
  • Nicholson, W. L. (2002). Roles of Bacillus endospores in the environment. Cellular and Molecular Life Sciences, 59(3), 410–416. https://doi.org/10.1007/s00018-002-8433-7
  • Oztopuz, O., Pekin, G., Park, R. D., & Eltem, R. (2018). Isolation and evaluation of new antagonist Bacillus strains for the control of pathogenic and mycotoxigenic fungi of fig orchards. Applied Biochemistry and Biotechnology, 186(3), 692–711. https://doi.org/10.1007/s12010-018-2764-9
  • Pailin, T., Kang, D. H., Schmidt, K., & Fung, D. Y. C. (2001). Detection of extracellular bound proteinase in EPS-producing lactic acid bacteria cultures on skim milk agar. Letters in Applied Microbiology, 33(1), 45–49. https://doi.org/10.1046/j.1472-765x.2001.00954.x
  • Pal, K. K., & Gardener, B. M. (2006). Biological control of plant pathogens. The Plant Health Instructor, 2, 1117–1142. https://doi.org/10.1094/phi-a-2006-1117-02
  • Pereira, D., McDonald, B. A., & Croll, D. (2020). The genetic architecture of emerging fungicide resistance in populations of a global wheat pathogen. Genome Biology and Evolution, 12(12), 2231–2224. https://doi.org/10.1093/gbe/evaa203
  • Raspor, P., Mikli-Milek, D., Avbelj, M., & Cadez, N. (2010). Biocontrol of grey mould disease on grape caused by Botrytis cinerea with autochthonous wine yeasts. Food Technology and Biotechnology, 48(3), 336–343.
  • Renouf, V., Claisse, O., & Lonvaud-Funel, A. (2005). Understanding the microbial ecosystem on the grape berry surface through numeration and identification of yeast and bacteria. Australian Journal of Grape and Wine Research, 11(3), 316–327. https://doi.org/10.1111/j.1755-0238.2005.tb00031.x
  • Rojas, E. C., Jensen, B., Jørgensen, H. J. L., Latz, M. A. C., Esteban, P., Ding, Y., & Collinge, D. B. (2020). Selection of fungal endophytes with biocontrol potential against FusariIum head blight in wheat. Biological Control, 144(156), 104222. https://doi.org/10.1016/j.biocontrol.2020.104222
  • Salvetti, E., Campanaro, S., Campedelli, I., Fracchetti, F., Gobbi, A., Tornielli, G. B., Torriani, S., & Felis, G. E. (2016). Whole-metagenome-sequencing-based community profiles of Vitis vinifera L. cv. Corvina Berries withered in two post-harvest conditions. Frontiers in Microbiology, 7, 937. https://doi.org/10.3389/fmicb.2016.00937
  • Salwa, E. I., Hassan, B. E. A., Elmutaz, N. H., & Abdel, M. E. S. (2012). Amylase production on solid state fermentation by Bacillus Spp. Food and Public Health, 2(1), 30–35. https://doi.org/10.5923/j.fph.20120201.06
  • Sawant, I. S., Narkar, S. P., Shetty, D. S., Upadhyay, A., & Sawant, S. D. (2012). Emergence of Colletotrichum gloeosporioides sensu lato as the dominant pathogen of anthracnose disease of grapes in India as evidenced by cultural, morphological and molecular data. Australasian Plant Pathology, 41(5), 493–504. https://doi.org/10.1007/s13313-012-0143-5
  • Sawant, I. S., Wadkar, P. N., Rajguru, Y. R., Mhaske, N. H., Salunkhe, V. P., Sawant, S. D., & Upadhyay, A. (2016). Biocontrol potential of two novel grapevine associated Bacillus strains for management of anthracnose disease caused by Colletotrichum gloeosporioides. Biocontrol Science and Technology, 26(7), 964–979. https://doi.org/10.1080/09583157.2016.1174770
  • Schonbichler, A., Diaz-Moreno, S. M., Srivastava, V., & McKee, L. S. (2020). Exploring the potential for fungal antagonism and cell wall attack by Bacillus subtilis natto. Frontiers in Microbiology, 11, 521. https://doi.org/10.3389/fmicb.2020.00521
  • Sharma, P., Sharma, N., Pathania, S., & Handa, S. (2017). Purification and characterization of lipase by Bacillus methylotrophicus PS3 under submerged fermentation and its application in detergent industry. Journal of Genetic Engineering and Biotechnology, 15(2), 369–377. https://doi.org/10.1016/j.jgeb.2017.06.007
  • Shrestha, J., Kushwaha, U. K. S., Maharjan, B., Kandel, M., Gurung, S. B., Poudel, A. P., Karna, M. K. L., & Acharya, R. (2020). Grain yield stability of rice genotypes. Indonesian Journal of Agricultural Research, 3(2), 116–126. https://doi.org/10.32734/injar.v3i2.3868
  • Stein, T. (2005). Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Molecular Microbiology, 56(4), 845–857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  • Wheeler, B. E. J. (1969). An introduction to plant diseases. Wiley.
  • Wisniewski, M. E., & Wilson, C. L. (1992). Biological control of postharvest diseases of fruits and vegetables: Recent advances. HortScience, 27(2), 94–98. https://doi.org/10.21273/HORTSCI.27.2.94
  • Wu, Y., Zhou, J., Li, C., & Ma, Y. (2019). Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. MicrobiologyOpen, 8(8), e813. https://doi.org/10.1002/mbo3.813
  • Xie, Y., Peng, Q., Ji, Y., Xie, A., Yang, L., Mu, S., Li, Z., He, T., Xiao, Y., Zhao, J., & Zhang, Q. (2021). Isolation and identification of antibacterial bioactive compounds from Bacillus megaterium L2. Frontiers in Microbiology, 12, 645484. https://doi.org/10.3389/fmicb.2021.645484
  • Yang, W., Meng, F., Peng, J., Han, P., Fang, F., Ma, L., & Cao, B. (2014). Isolation and identification of a cellulolytic bacterium from the Tibetan pig’s intestine and investigation of its cellulase production. Electronic Journal of Biotechnology, 17(6), 262–267. https://doi.org/10.1016/j.ejbt.2014.08.002
  • Yuan, J., Raza, W., Shen, Q., & Huang, Q. (2012). Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Applied and Environmental Microbiology, 78(16), 5942–5944. https://doi.org/10.1128/AEM.01357-12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.