143
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Combining the virulent Beauveria bassiana (Balsam) Vuillemin LCB289 and nematode strains to control pupae of Ceratitis capitata Wiedemann

ORCID Icon & ORCID Icon
Pages 383-396 | Received 29 Sep 2022, Accepted 11 Mar 2023, Published online: 23 Mar 2023

References

  • Acevedo, J. P. M., Samuels, R. I., Machado, I. R., & Dolinski, C. (2007). Interactions between isolates of the entomopathogenic fungus Metarhizium anisopliae and the entomopathogenic nematode Heterorhabditis bacteriophora JPM4 during infection of the sugar cane borer Diatraea saccharalis (Lepidoptera: Pyralidae). Journal of Invertebrate Pathology, 96(2), 187–192. https://doi.org/10.1016/j.jip.2007.04.003
  • Al-Khshemawee, H., Agarwal, M., & Ren, Y. (2017). Evaluation of stable isotope 13c6-glucose on volatile organic compounds in different stages of Mediterranean Fruit Fly (Medfly) Ceratitis capitata (Diptera: Tephritidae). Entomology, Ornithology & Herpetology: Current Research, 6(03), 1000195. https://doi.org/10.4172/2161-0983.1000195
  • Alonso, V., Nasrolahi, S., & Dillman, A. R. (2018). Host-specific activation of entomopathogenic nematode infective juveniles. Insects, 9(2), 59. https://doi.org/10.3390/insects9020059
  • Aryal, S., Nielsen, U. N., Sumaya, N. H., Wilson, C., & Riegler, M. (2022). Virulence, penetration rate, and reproductive potential of entomopathogenic nematodes from eastern Australia in Queensland fruit fly, Bactrocera tryoni. Biological Control, 169, 104871. https://doi.org/10.1016/j.biocontrol.2022.104871
  • Beavers, J. B., & Calkins, C. O. (1984). Susceptibility of Anastrepha suspensa (Diptera: Tephritidae) to Steinernematid and Heterorhahditid nematodes in laboratory studies. Environmental Entomology, 13(1), 137–139. https://doi.org/10.1093/ee/13.1.137
  • Blanco-Pérez, R., Bueno-Pallero, FÁ, Neto, L., & Campos-Herrera, R. (2017). Reproductive efficiency of entomopathogenic nematodes as scavengers. Are they able to fight for insect's cadavers? Journal of Invertebrate Pathology, 148, 1–9. https://doi.org/10.1016/j.jip.2017.05.003
  • Cedney, J.-B. M., de Brida, A. L., Bernardi, D., da Costa Dias, S., de Bastos Pazini, J., Leite, L. G., Wilcken, S. R. S., & Garcia, F. R. M. (2021). Effectiveness of entomopathogenic nematodes against Ceratitis capitata (Diptera: Tephritidae) pupae and nematode compatibility with chemical insecticides. Journal of Economic Entomology, 114(1), 248–256. https://doi.org/10.1093/jee/toaa301
  • Cooper, D., Wuebbolt, C., Heryanto, C., & Eleftherianos, I. (2019). The prophenoloxidase system in Drosophila participates in the anti-nematode immune response. Molecular Immunology, 109, 88–98. https://doi.org/10.1016/j.molimm.2019.03.008
  • Cuthbertson, A. G. S., & Audsley, N. (2016). Further screening of entomopathogenic fungi and nematodes as control agents for Drosophila suzukii. Insects, 7(2), 24. https://doi.org/10.3390/insects7020024
  • Dias, N. P., Zotti, M. J., Montoya, P., Carvalho, I. R., & Nava, D. E. (2018). Fruit fly management research: A systematic review of monitoring and control tactics in the world. Crop Protection, 112(3), 187–200. https://doi.org/10.1016/j.cropro.2018.05.019
  • Dyck, V. A., Hendrichs, J., & Robinson, A. S. (eds.). (2020). Sterile Insect Technique (SIT) - Principles and practice in area-wide integrated pest management (2nd ed.). CRC Press.
  • Fu, Y., Wang, W., Chen, C., Shan, S., Wei, X., Liu, Y., … Ruan, W. (2021). Chemotaxis behaviour of Steinernema carpocapsae in response to Galleria mellonella (L.) larvae infected by con- or hetero-specific entomopathogenic nematodes. Biocontrol Science and Technology, 31(3), 299–313. https://doi.org/10.1080/09583157.2020.1853049
  • Gava, C. A. T., da Silva, J. C., Simões, W. L., & Paranhos, B. A. J. (2021). Impact of soil texture on conidia movement and residual effect of entomopathogenic fungi applied through irrigation to control fruit-fly pupae in mango orchards. Biological Control, 104559. https://doi.org/10.1016/j.biocontrol.2021.104559
  • Gava, C. A. T., Tavares, P. F. D. S., Santana, J., & Paranhos, B. A. J. (2019). Applying local entomopathogenic fungi strains to the soil can control Ceratitis capitata (Diptera : Tephritidae) Wiedemann adults. Biocontrol Science and Technology, 30(2), 103–115. https://doi.org/10.1080/09583157.2019.1691716
  • Gulzar, S., Wakil, W., & Shapiro-Ilan, D. I. (2021). Potential use of entomopathogenic nematodes against the soil-dwelling stages of onion thrips, Thrips tabaci Lindeman: Laboratory, greenhouse and field trials. Biological Control, 161, 104677. https://doi.org/10.1016/J.BIOCONTROL.2021.104677
  • Heve, W. K., Adjadeh, T. A., & Billah, M. K. (2021). Overview and future research needs for development of effective biocontrol strategies for management of Bactrocera dorsalis Hendel (Diptera: Tephritidae) in sub-Saharan Africa. Pest Management Science, 77(10), 4224–4237. https://doi.org/10.1002/ps.6485
  • Hummadi, E. H., Dearden, A., Generalovic, T., Clunie, B., Harrott, A., Cetin, Y., … Butt, T. (2021). Volatile organic compounds of Metarhizium brunneum influence the efficacy of entomopathogenic nematodes in insect control. Biological Control, 155, 104527. https://doi.org/10.1016/j.biocontrol.2020.104527
  • Kapranas, A., Chronopoulou, A., Lytra, I. C., Peters, A., Milonas, P. G., & Papachristos, D. P. (2021). Efficacy and residual activity of commercially available entomopathogenic nematode strains for Mediterranean fruit fly control and their ability to infect infested fruits. Pest Management Science, 77(9), 3964–3969. https://doi.org/10.1002/ps.6416
  • Kary, N. E., Sanatipour, Z., Mohammadi, D., & Dunphy, G. (2022). Virulence and sex-dependent invasion efficiency of entomopathogenic nematodes on developmental stages of Phthorimaea operculella (Lep., Gelechidae). Journal of Asia-Pacific Entomology, 25(1), 101874. https://doi.org/10.1016/j.aspen.2022.101874
  • Koppenhöfer, A. M., Kostromytska, O. S., & Wu, S. (2020). Optimizing the use of entomopathogenic nematodes for the management of Listronotus maculicollis (Coleoptera: Curculionidae): Split applications and combinations with imidacloprid. Crop Protection, 137, 105229. https://doi.org/10.1016/j.cropro.2020.105229
  • Kruitibos, L. M., Heritage, S., Hapca, S., & Wilson, M. J. (2010). The influence of habitat quality on the foraging strategies of the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis megidis. Parasitology, 137(2), 303–309. https://doi.org/10.1017/S0031182009991326
  • Lankin, G., Vidal-Retes, G., Allende, G., Castaneda-Alvarez, C., San-Blas, E., & Aballay, E. (2020). Soil texture, infective juvenile concentration, and soil organic matter influence the efficacy of Steinernema feltiae isolate Lican Ray. Journal of Nematology, 52(1), 1–11. https://doi.org/10.21307/JOFNEM-2020-007
  • Lei, C., & Sun, X. (2018). Comparing lethal dose ratios using probit regression with arbitrary slopes. BMC Pharmacology and Toxicology, 19(1), 1–10. https://doi.org/10.1186/s40360-018-0250-1
  • Lindegren, J. E., Wong, T. T., & McInnis, D. O. (1990). Response of Mediterranean fruit fly (Diptera: Tephritidae) to the entomogenous nematode Steinernema feltiae in field tests in Hawaii. Environmental Entomology, 19(6), 383–386. https://doi.org/10.1093/ee/19.2.383
  • Louzeiro, L. R. F., Souza-Filho, M. F. d., Raga, A., & Gisloti, L. J. (2021). Incidence of frugivorous flies (Tephritidae and Lonchaeidae), fruit losses and the dispersal of flies through the transportation of fresh fruit. Journal of Asia-Pacific Entomology, 24(1), 50–60. https://doi.org/10.1016/J.ASPEN.2020.11.006
  • Medina, P., Corrales, E., González-Nuñez, M., Smagghe, G., & Viñuela, E. (2008). Effect of Beauveria bassiana, Heterorhabditis bacteriophora, H . megidis, and Steinernema feltiae on the Mediterranean fruit fly Ceratitis capitata and the very sensitive braconid Psyttalia concolor in the lab. Pesticides and Beneficial Organisms IOBC/WPRS Bulletin, 35, 113–121. ISBN 978-92-9067-209-8.
  • Nestel, D., Nemny-Lavy, E., & Alchanatis, V. (2007). Gas-exchange patterns of Mediterranean fruit fly pupae (Diptera: Tephritidae): A tool to forecast developmental stage. Florida Entomologist, 90(1), 71–79. https://doi.org/10.1653/0015-4040(2007)90[71:GPOMFF]2.0.CO;2
  • Oliveira-Hofman, C., Kaplan, F., Stevens, G., Lewis, E., Wu, S., Alborn, H. T., Perret-Gentil, A., & Shapiro-Ilan, D. I. (2019). Pheromone extracts act as boosters for entomopathogenic nematodes efficacy. Journal of Invertebrate Pathology, 164, 38–42. https://doi.org/10.1016/j.jip.2019.04.008
  • Orsini, M. M., Daane, K. M., Sime, K. R., & Nelson, E. H. (2007). Mortality of olive fruit fly pupae in California. Biocontrol Science and Technology, 17(8), 797–807. https://doi.org/10.1080/09583150701527359
  • Ozakman, Y., & Eleftherianos, I. (2021). Nematode infection and antinematode immunity in drosophila. Trends in Parasitology, 37(11), 1002–1013. https://doi.org/10.1016/j.pt.2021.06.001
  • Paranhos, B. J., Nava, D. E., & Malavasi, A. (2019). Biological control of fruit flies in Brazil. Pesquisa Agropecuária Brasileira, 54, e26037. https://doi.org/10.1590/s1678-3921.pab2019.v54.26037
  • Püntener, W. (1992). Manual for field trials in plant protection. Ciba-Geigy.
  • Rohde, C., Mertz, N. R., & Junior, A. M. (2020). Entomopathogenic nematodes on control of Mediterranean fruit fly (Diptera: Tephritidae). Revista Caatinga, 33(4), 974–984. https://doi.org/10.1590/1983-21252020v33n412rc
  • Sandhi, R. K., Shapiro-Ilan, D., Ivie, M., & Reddy, G. V. P. (2021). Biocontrol of wireworms (Coleoptera: Elateridae) using entomopathogenic nematodes: The impact of infected host cadaver application and soil characteristics. Environmental Entomology, 50(4), 868–877. https://doi.org/10.1093/ee/nvab042
  • Sandhi, R. K., Shapiro-Ilan, D., Sharma, A., & Reddy, G. V. P. (2020). Efficacy of entomopathogenic nematodes against the sugarbeet wireworm Limonius californicus (Mannerheim) (Coleoptera: Elateridae). Biological Control, 143, 104190. https://doi.org/10.1016/J.BIOCONTROL.2020.104190
  • Shapiro-Ilan, D., Hazir, S., & Pests, I. G. (2017). Basic and applied research: Entomopathogenic nematodes. In L. A. Lacey (Ed.), Microbial control of insect and mite pests: From theory to practice (pp. 91–105). Academic Press.
  • Shaurub, E. S. H. (2023). Review of entomopathogenic fungi and nematodes as biological control agents of tephritid fruit flies: Current status and a future vision. Entomologia Experimentalis et Applicata, 171(1), 17–34. https://doi.org/10.1111/eea.13244
  • Silva Neto, A. M. d., Santos, T. R. d. O., Dias, V. S., Joachim-Bravo, I. S., Benevides, L. d. J., Benevides, C. M. d. J., Silva, M. V. L., dos Santos, D. C. C., Virgínio, J., Oliveira, G. B., Walder, J. M. M., Paranhos, B. A. J., & Nascimento, A. S. d. (2012). Mass-rearing of Mediterranean fruit fly using low-cost yeast products produced in Brazil. Scientia Agricola, 69(6), 364–369. https://doi.org/10.1590/S0103-90162012000600004
  • Toledo, J., Williams, T., Pérez, C., Liedo, P., Valle, J. F., & Ibarra, J. E. (2009). Abiotic factors affecting the infectivity of Steinernema carpocapsae (Rhabditida: Steinernematidae) on larvae of Anastrepha obliqua (Diptera: Tephritidae). Biocontrol Science and Technology, 19(9), 887–898. https://doi.org/10.1080/09583150903180429
  • Usman, M., Gulzar, S., Wakil, W., Piñero, J. C., Leskey, T. C., Nixon, L. J., Oliveira-Hofman, C., Wu, S., & Shapiro-Ilan, D. (2021). Potential of entomopathogenic nematodes against the pupal stage of the apple maggot Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). Journal of Nematology, 52(52), e2020–e2079. https://doi.org/10.21307/jofnem-2020-079
  • Usman, M., Wakil, W., & Shapiro-Ilan, D. I. (2021). Entomopathogenic nematodes as biological control agent against Bactrocera zonata and Bactrocera dorsalis (Diptera: Tephritidae). Biological Control, 163, 104706. https://doi.org/10.1016/j.biocontrol.2021
  • Wakil, W., Usman, M., Piñero, J. C., Wu, S., Toews, M. D., & Shapiro-Ilan, D. I. (2022). Combined application of entomopathogenic nematodes and fungi against fruit flies Bactrocera zonata and B. dorsalis (Diptera: Tephritidae): laboratory cups to field study. Pest Management Science, 78(7), 2779–2791. https://doi.org/10.1002/ps.6899
  • Xu, C., De Clercq, P., Moens, M., Chen, S., & Han, R. (2010). Efficacy of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) against the striped flea beetle. Phyllotreta Striolata. BioControl, 55(6), 789–797. https://doi.org/10.1007/s10526-010-9300-3
  • Zhang, X., Li, L., Kesner, L., & Robert, C. A. M. (2021). Chemical host-seeking cues of entomopathogenic nematodes. Current Opinion in Insect Science, 44, 72–81. https://doi.org/10.1016/J.COIS.2021.03.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.