89
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Genomic insights into Streptomyces hygroscopicus subsp.hygroscopicus SRF1: a potential biocontrol agent against fusarium wilt with plant growth-promoting abilities in tomatoes

ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon
Pages 389-410 | Received 26 Feb 2024, Accepted 25 Apr 2024, Published online: 13 May 2024

References

  • Al-Askar, A. A., Baka, Z. A., Rashad, Y. M., Ghoneem, K. M., Abdulkhair, W. M., Hafez, E. E., & Shabana, Y. M. (2015). Evaluation of Streptomyces griseorubens E44G for the biocontrol of Fusarium oxysporum f. sp. lycopersici: Ultrastructural and cytochemical investigations. Annals of Microbiology, 65(4), 1815–1824. https://doi.org/10.1007/s13213-014-1019-4
  • Alijani, Z., Amini, J., Ashengroph, M., & Bahramnejad, B. (2019). Antifungal activity of volatile compounds produced by Staphylococcus sciuri strain MarR44 and its potential for the biocontrol of Colletotrichum nymphaeae, causal agent strawberry anthracnose. International Journal of Food Microbiology, 307, 108276. https://doi.org/10.1016/j.ijfoodmicro.2019.108276
  • Ambrico, A., & Trupo, M. (2017). Efficacy of cell free supernatant from Bacillus subtilis ET-1, an Iturin A producer strain, on biocontrol of green and gray mold. Postharvest Biology and Technology, 134, 5–10. https://doi.org/10.1016/j.postharvbio.2017.08.001
  • Amini, J., & Sidovich, D. (2010). The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. Journal of Plant Protection Research.
  • Arcury, T. A., & Quandt, S. A. (2003). Pesticides at work and at home: Exposure of migrant farmworkers. The Lancet, 362(9400), 2021. https://doi.org/10.1016/S0140-6736(03)15027-1
  • Bauer, J. S., Hauck, N., Christof, L., Mehnaz, S., Gust, B., & Gross, H. (2016). The systematic investigation of the quorum sensing system of the biocontrol strain Pseudomonas chlororaphis subsp. aurantiaca PB-St2 unveils aurI to be a biosynthetic origin for 3-oxo-homoserine lactones. PLoS One, 11(11), e0167002. https://doi.org/10.1371/journal.pone.0167002
  • Berdy, J. (2005). Bioactive microbial metabolites. The Journal of Antibiotics, 58(1), 1–26. https://doi.org/10.1038/ja.2005.1
  • Bhai, R. S., Lijina, A., Prameela, T. P., Krishna, P. B., & Thampi, A. (2016). Biocontrol and growth promotive potential of Streptomyces spp. in black pepper (Piper nigrum L.). Journal of Biological Control, 30(3), 63–71.
  • Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema, M. H., & Weber, T. (2019). AntiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Research, 47(W1), W81–W87. https://doi.org/10.1093/nar/gkz310
  • Bush, M. J., Tschowri, N., Schlimpert, S., Flärdh, K., & Buttner, M. J. (2015). c-di-GMP signalling and the regulation of developmental transitions in Streptomycetes. Nature Reviews Microbiology, 13(12), 749–760. https://doi.org/10.1038/nrmicro3546
  • Chaiharn, M., Theantana, T., & Pathom-Aree, W. (2020). Evaluation of biocontrol activities of Streptomyces spp. Against rice blast disease fungi. Pathogens, 9(2), 126. https://doi.org/10.3390/pathogens9020126
  • Chen, A., Sun, J., Matthews, A., Armas-Egas, L., Chen, N., Hamill, S., Mintoff, S., Tran-Nguyen, L. T. T., Batley, J., & Aitken, E. A. (2019). Assessing variations in host resistance to Fusarium oxysporum f. sp. cubense race 4 in Musa species, with a focus on the subtropical race 4. Frontiers in Microbiology, 10, 1062. https://doi.org/10.3389/fmicb.2019.01062
  • Cheng, J., Yang, S. H., Palaniyandi, S. A., Han, J. S., Yoon, T. M., Kim, T. J., & Suh, J. W. (2010). Azalomycin F complex is an antifungal substance produced by Streptomyces malaysiensis MJM1968 isolated from agricultural soil. Journal of the Korean Society for Applied Biological Chemistry, 53(5), 545–552. https://doi.org/10.3839/jksabc.2010.084
  • Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D. R., da Costa, M. S., Rooney, A. P., Yi, H., Xu, X.-W., De Meyer, S., & Trujillo, M. E. (2018). Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 68(1), 461–466. https://doi.org/10.1099/ijsem.0.002516
  • de Jong, A., van Hijum, S. A., Bijlsma, J. J., Kok, J., & Kuipers, O. P. (2006). BAGEL: A web-based bacteriocin genome mining tool. Nucleic Acids Research, 34(suppl_2), W273–W279. https://doi.org/10.1093/nar/gkl237
  • Demain, A. L. (2009). Antibiotics: Natural products essential to human health. Medicinal Research Reviews, 29(6), 821–842. https://doi.org/10.1002/med.20154
  • Elena, M., & de Villegas, D. (2007). Biotechnological Production of Siderophores. In A. Varma & S. B. Chincholkar (Eds.), Microbial siderophores (Vol. 12, pp. 219–231). Springer, Berlin, Heidelberg.https://doi.org/10.1007/978-3-540-71160-5_11.
  • El-Tarabily, K. A., Nassar, A. H., Hardy, G. S. J., & Sivasithamparam, K. (2009). Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. Journal of Applied Microbiology, 106(1), 13–26. https://doi.org/10.1111/j.1365-2672.2008.03926.x
  • Figueiredo, M. D. V. B., Seldin, L., de Araujo, F. F., & Mariano, R. D. L. R. (2011). Plant growth promoting rhizobacteria: Fundamentals and applications. In D. Maheshwari (Ed.), Plant growth and health promoting bacteria (Vol. 18, pp. 21–43). Springer, Berlin, Heidelberg.https://doi.org/10.1007/978-3-642-13612-2_2.
  • Ghorbel, S., Kammoun, M., Soltana, H., Nasri, M., & Hmidet, N. (2014). Streptomyces flavogriseus HS1: Isolation and characterization of extracellular proteases and their compatibility with laundry detergents. BioMed Research International, 2014, 1–8. https://doi.org/10.1155/2014/345980
  • Glickmann, E., & Dessaux, Y. (1995). A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61(2), 793–796. https://doi.org/10.1128/aem.61.2.793-796.1995
  • Goodfellow, M., Kumar, Y., Labeda, D. P., & Sembiring, L. (2007). The Streptomyces violaceusniger clade: A home for streptomycetes with rugose ornamented spores. Antonie van Leeuwenhoek, 92(2), 173–199. https://doi.org/10.1007/s10482-007-9146-6
  • Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P., & Tiedje, J. M. (2007). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. International Journal of Systematic and Evolutionary Microbiology, 57(1), 81–91. https://doi.org/10.1099/ijs.0.64483-0
  • Harrison, J., & Studholme, D. J. (2014). Recently published Streptomyces genome sequences. Microbial Biotechnology, 7(5), 373. https://doi.org/10.1111/1751-7915.12143
  • Harunari, E., Komaki, H., & Igarashi, Y. (2017). Biosynthetic origin of butyrolactol A, an antifungal polyketide produced by a marine-derived Streptomyces. Beilstein Journal of Organic Chemistry, 13(1), 441–450. https://doi.org/10.3762/bjoc.13.47
  • Harvey, B. M., Mironenko, T., Sun, Y., Hong, H., Deng, Z., Leadlay, P. F., Weissman, K. J., & Haydock, S. F. (2007). Insights into polyether biosynthesis from analysis of the nigericin biosynthetic gene cluster in Streptomyces sp. DSM4137. Chemistry & Biology, 14(6), 703–714. https://doi.org/10.1016/j.chembiol.2007.05.011
  • Kawicha, P., Laopha, A., Chamnansing, W., Sopawed, W., Wongcharone, A., & Sangdee, A. (2020). Biocontrol and plant growth-promoting properties of Streptomyces isolated from vermicompost soil. Indian Phytopathology, 73(4), 655–666. https://doi.org/10.1007/s42360-020-00267-2
  • Kawicha, P., Nitayaros, J., Saman, P., Thaporn, S., Thanyasiriwat, T., Somtrakoon, K., Sangdee, K., & Sangdee, A. (2023). Evaluation of soil Streptomyces spp. for the biological control of fusarium wilt disease and growth promotion in tomato and banana. The Plant Pathology Journal, 39(1), 108. https://doi.org/10.5423/PPJ.OA.08.2022.0124
  • Khamna, S., Yokota, A., Peberdy, J. F., & Lumyong, S. (2010). Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. EurAsian Journal of BioSciences, 4, 23–31.
  • Kirankumar, R., Jagadeesh, K. S., Krishnaraj, P. U., & Patil, M. S. (2010). Enhanced growth promotion of tomato and nutrient uptake by plant growth promoting rhizobacterial isolates in presence of tobacco mosaic virus pathogen. Karnataka Journal of Agricultural Sciences, 21(2), 309–311.
  • Lee, N., Hwang, S., Kim, J., Cho, S., Palsson, B., & Cho, B. K. (2020). Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Computational and Structural Biotechnology Journal, 18, 1548–1556. https://doi.org/10.1016/j.csbj.2020.06.024
  • Lee, N., Kim, W., Hwang, S., Lee, Y., Cho, S., Palsson, B., & Cho, B. K. (2020). Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Scientific Data, 7(1), 55. https://doi.org/10.1038/s41597-020-0395-9
  • Lefort, V., Desper, R., & Gascuel, O. (2015). FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Molecular Biology and Evolution, 32(10), 2798–2800. https://doi.org/10.1093/molbev/msv150
  • Li, M. H., Ung, P. M., Zajkowski, J., Garneau-Tsodikova, S., & Sherman, D. H. (2009). Automated genome mining for natural products. BMC Bioinformatics, 10(1), 1–10. https://doi.org/10.1186/1471-2105-10-1
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
  • McGovern, R. J. (2015). Management of tomato diseases caused by Fusarium oxysporum. Crop Protection, 73, 78–92. https://doi.org/10.1016/j.cropro.2015.02.021
  • Meier-Kolthoff, J. P., Auch, A. F, Klenk, H. P., & Göker, M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics, 14(1), 463. http://dx.doi.org/10.1186/1471-2105-14-60
  • Meier-Kolthoff, J. P., Carbasse, J. S., Peinado-Olarte, R. L., & Göker, M. (2022). TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Research, 50(D1), D801–D807. https://doi.org/10.1093/nar/gkab902
  • Meier-Kolthoff, J. P., & Göker, M. (2019). TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nature Communications, 10(1), 2182. https://doi.org/10.1038/s41467-019-10210-3
  • Pengproh, R., Thanyasiriwat, T., Sangdee, K., Kawicha, P., & Sangdee, A. (2023a). Antagonistic ability and genome mining of soil Streptomyces spp. against Fusarium oxysporum f. sp. lycopersici. European Journal of Plant Pathology, 1–20.
  • Pengproh, R., Thanyasiriwat, T., Sangdee, K., Saengprajak, J., Kawicha, P., & Sangdee, A. (2023b). Evaluation and genome mining of Bacillus stercoris isolate B. PNR1 as potential agent for fusarium wilt control and growth promotion of tomato. The Plant Pathology Journal, 39(5), 430. https://doi.org/10.5423/PPJ.OA.01.2023.0018
  • Pérez-Miranda, S., Cabirol, N., George-Téllez, R., Zamudio-Rivera, L. S., & Fernández, F. J. (2007). O-CAS, a fast and universal method for siderophore detection. Journal of Microbiological Methods, 70(1), 127–131. https://doi.org/10.1016/j.mimet.2007.03.023
  • Richter, M., & Rosselló-Móra, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences, 106(45), 19126–19131. https://doi.org/10.1073/pnas.0906412106
  • Sajitha, K. L., & Florence, E. J. M. (2013). Effects of Streptomyces sp. on growth of rubberwood sapstain fungus Lasiodiplodia theobromae. Journal of Tropical Forest Science, 393–399.
  • Saleem, M., Law, A. D., & Moe, L. A. (2016). Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes. Microbial Ecology, 71(2), 469–472. https://doi.org/10.1007/s00248-015-0672-x
  • Sangdee, A., Kornphachara, S., & Srisawat, N. (2016). In vitro screening of antagonistic activity of soil Streptomyces against plant pathogenic fungi and assessment of its characters. Journal of Agricultural Technology, 12(1), 173–185.
  • Schwyn, B., & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47–56. https://doi.org/10.1016/0003-2697(87)90612-9
  • Shi, L., Nwet, T. T., Ge, B., Zhao, W., Liu, B., Cui, H., & Zhang, K. (2018). Antifungal and plant growth-promoting activities of Streptomyces roseoflavus strain NKZ-259. Biological Control, 125, 57–64. https://doi.org/10.1016/j.biocontrol.2018.06.012
  • Singh, V., Tripathi, C. K. M., & Bihari, V. (2008). Production, optimization and purification of an antifungal compound from Streptomyces capoamus MTCC 8123. Medicinal Chemistry Research, 17(2–7), 94–102. https://doi.org/10.1007/s00044-007-9040-9
  • Skinnider, M. A., Merwin, N. J., Johnston, C. W., & Magarvey, N. A. (2017). PRISM 3: Expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Research, 45(W1), W49–W54. https://doi.org/10.1093/nar/gkx320
  • Song, W., Zhou, L., Yang, C., Cao, X., Zhang, L., & Liu, X. (2004). Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Protection, 23(3), 243–247. https://doi.org/10.1016/j.cropro.2003.08.007
  • Sousa, J. A. D. J., & Olivares, F. L. (2016). Plant growth promotion by streptomycetes: Ecophysiology, mechanisms and applications. Chemical and Biological Technologies in Agriculture, 3(1), 1–12. https://doi.org/10.1186/s40538-015-0051-3
  • Srinivas, C., Devi, D. N., Murthy, K. N., Mohan, C. D., Lakshmeesha, T. R., Singh, B., Kalagatur, N. K., Niranjana, S. R., Hashem, A., Alqarawi, A. A., Tabassum, B., Abd_Allah, E. F., Chandra Nayaka, S., & Srivastava, R. K. (2019). Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: Biology to diversity–A review. Saudi Journal of Biological Sciences, 26(7), 1315–1324. https://doi.org/10.1016/j.sjbs.2019.06.002
  • Srividya, S., Thapa, A., Bhat, D. V., Golmei, K., & Dey, N. (2012). Streptomyces sp. 9p as effective biocontrol against chilli soilborne fungal phytopathogens. European Journal of Experimental Biology, 2(1), 163–173.
  • Starcevic, A., Zucko, J., Simunkovic, J., Long, P. F., Cullum, J., & Hranueli, D. (2008). Clustscan: An integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Research, 36(21), 6882–6892. https://doi.org/10.1093/nar/gkn685
  • Suárez-Moreno, Z. R., Vinchira-Villarraga, D. M., Vergara-Morales, D. I., Castellanos, L., Ramos, F. A., Guarnaccia, C., Kalagatur, N. K., Niranjana, S. R., Hashem, A., Alqarawi, A. A., Tabassum, B., Abd_Allah, E. F., Chandra Nayaka, S., & Moreno-Sarmiento, N. (2019). Plant-growth promotion and biocontrol properties of three Streptomyces spp. isolates to control bacterial rice pathogens. Frontiers in Microbiology, 10, 290. https://doi.org/10.3389/fmicb.2019.00290
  • Vurukonda, S. S. K. P., Giovanardi, D., & Stefani, E. (2018). Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. International Journal of Molecular Sciences, 19(4), 952. https://doi.org/10.3390/ijms19040952
  • Wang, Z., Solanki, M. K., Yu, Z. X., Anas, M., Dong, D. F., Xing, Y. X., Malviya, M. K., Pang, F., & Li, Y. R. (2021). Genome characteristics reveal the biocontrol potential of actinobacteria isolated from sugarcane rhizosphere. Frontiers in Microbiology, 12, 797889. https://doi.org/10.3389/fmicb.2021.797889
  • Weber, T., Rausch, C., Lopez, P., Hoof, I., Gaykova, V., Huson, D. H., & Wohlleben, W. (2009). CLUSEAN: A computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. Journal of Biotechnology, 140(1-2), 13–17. https://doi.org/10.1016/j.jbiotec.2009.01.007
  • Xu, L., Xu, X., Yuan, G., Wang, Y., Qu, Y., & Liu, E. (2018). Mechanism of azalomycin F 5a against methicillin-resistant Staphylococcus aureus. BioMed Research International, 2018, 6942452.
  • Xu, T., Cao, L., Zeng, J., Franco, C. M., Yang, Y., Hu, X., Liu, Y., Wang, X., Gao, Y., Bu, Z., Shi, L., Zhou, G., Zhou, Q., Liu, X., & Zhu, Y. (2019). The antifungal action mode of the rice endophyte Streptomyces hygroscopicus OsiSh-2 as a potential biocontrol agent against the rice blast pathogen. Pesticide Biochemistry and Physiology, 160, 58–69. https://doi.org/10.1016/j.pestbp.2019.06.015
  • Xu, T., Li, Y., Zeng, X., Yang, X., Yang, Y., Yuan, S., Hu, X., Zeng, J., Wang, Z., Liu, Q., Liu, Y., Liao, H., Tong, C., Liu, X., & Zhu, Y. (2017). Isolation and evaluation of endophytic Streptomyces endus OsiSh-2 with potential application for biocontrol of rice blast disease. Journal of the Science of Food and Agriculture, 97(4), 1149–1157. https://doi.org/10.1002/jsfa.7841
  • Yuan, G., Li, P., Pan, W., Pang, H., & Chen, S. (2013). The relative configurations of azalomycins F5a, F4a and F3a. Journal of Molecular Structure, 1035, 31–37. https://doi.org/10.1016/j.molstruc.2012.09.024
  • Yun, T., Jing, T., Zang, X., Zhou, D., Li, K., Zhao, Y., Wang, W., & Xie, J. (2023). Antimicrobial mechanisms and secondary metabolite profiles of Streptomyces hygroscopicus subsp. hygroscopicus 5–4 against banana fusarium wilt disease using metabolomics. Frontiers in Microbiology, 14, 1159534. https://doi.org/10.3389/fmicb.2023.1159534
  • Zeng, J., Xu, T., Cao, L., Tong, C., Zhang, X., Luo, D., Han, S., Pang, P., Fu, W., Yan, J., Liu, X., & Zhu, Y. (2018). The role of iron competition in the antagonistic action of the rice endophyte Streptomyces sporocinereus OsiSh-2 against the pathogen Magnaporthe oryzae. Microbial Ecology, 76(4), 1021–1029. https://doi.org/10.1007/s00248-018-1189-x
  • Zuo, C., Deng, G., Li, B., Huo, H., Li, C., Hu, C., Kuang, R., Yang, Q., Dong, T., Sheng, O., & Yi, G. (2018). Germplasm screening of Musa spp. for resistance to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). European Journal of Plant Pathology, 151(3), 723–734. https://doi.org/10.1007/s10658-017-1406-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.