25
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

RNA-Seq analysis reveals the gene expression changes of Bemisia tabaci in response to destruxin A treatment

, , &
Pages 438-451 | Received 14 Nov 2023, Accepted 27 Apr 2024, Published online: 14 May 2024

References

  • Abubakar, M., Koul, B., Chandrashekar, K., Raut, A., & Yadav, D. (2022). Whitefly (Bemisia tabaci) management (WFM) strategies for sustainable agriculture: A review. Agriculture, 12(9), 1317. https://doi.org/10.3390/agriculture12091317
  • Alon, M., Alon, F., Nauen, R., & Morin, S. (2008). Organophosphates’ resistance in the b-biotype of bemisia tabaci (hemiptera: aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. Insect Biochemistry and Molecular Biology, 38(10), 940–949. https://doi.org/10.1016/j.ibmb.2008.07.007
  • Barbosa, L. D. F., Marubayashi, J. M., De Marchi, B. R., Yuki, V. A., Pavan, M. A., Moriones, E., Navas-Castillo, J., & Krause-Sakate, R. (2014). Indigenous American species of the Bemisia tabaci complex are still widespread in the Americas. Pest Management Science, 70(10), 1440–1445. https://doi.org/10.1002/ps.3731
  • Barman, M., Samanta, S., Upadhyaya, G., Thakur, H., Chakraborty, S., Samanta, A., & Tarafdar, J. (2022). Unraveling the basis of neonicotinoid resistance in whitefly species complex: Role of endosymbiotic bacteria and insecticide resistance genes. Frontiers in Microbiology, 13, 901793. https://doi.org/10.3389/fmicb.2022.901793
  • Blackmer, J. L., Lee, L. L., & Henneberry, T. J. (2002). Factors affecting egg hatch, development, and survival of Bemisia argentifolii (Homoptera: Aleyrodidae) reared on an artificial feeding system. Environmental Entomology, 31(2), 306–312. https://doi.org/10.1603/0046-225X-31.2.306
  • Chen, C., Shan, T., Liu, Y., Shi, X., & Gao, X. (2019). Identification of a novel cytochrome P450 CYP3356A1 linked with insecticide detoxification in Bradysia odoriphaga. Pest Management Science, 75(4), 1006–1013. https://doi.org/10.1002/ps.5208
  • Chen, W., Hasegawa, D. K., Kaur, N., Kliot, A., Pinheiro, P. V., Luan, J., Stensmyr, M. C., Zheng, Y., Liu, W., Sun, H., Xu, Y., Luo, Y., Kruse, A., Yang, X., Kontsedalov, S., Lebedev, G., Fisher, T. W., Nelson, D. R., Hunter, W. B., … Fei, Z. (2005). The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biology, 3(1), 1–15. https://doi.org/10.1186/1741-7007-3-1
  • De Barro, P. J., Liu, S. S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56(1), 1–19. https://doi.org/10.1146/annurev-ento-112408-085504
  • Feyereisen, R. (2012). Insect CYP genes and P450 enzymes. Insect Mol biol 8:236-316. In L. I. Gilbert (Ed.), Insect molecular biology and biochemistry (pp. 236–316). Academic Press.
  • Ghosh, S., & Ghanim, M. (2021). Factors determining transmission of persistent viruses by Bemisia tabaci and emergence of new virus–vector relationships. Viruses, 13(9), 1808. https://doi.org/10.3390/v13091808
  • Gong, L., Chen, X., Liu, C., Jin, F., & Hu, Q. (2014). Gene expression profile of bombyx mori hemocyte under the stress of destruxin A. PLoS One, 9(5), e961705.
  • Götz, M., & Winter, S. (2016). Diversity of Bemisia tabaci in Thailand and Vietnam and indications of species replacement. Journal of Asia-Pacific Entomology, 19(2), 537–543. https://doi.org/10.1016/j.aspen.2016.04.017
  • Han, P., Jin, F., Dong, X., Fan, J., Qiu, B., & Ren, S. (2013). Transcript and protein profiling analysis of the destruxin a-induced response in larvae of Plutella xylostella. PLoS One, 8(4), e607714.
  • Hayes, J. D., Flanagan, J. U., & Jowsey, I. R. (2005). Glutathione transferases. Annual Review of Pharmacology and Toxicology, 45(1), 51–88. https://doi.org/10.1146/annurev.pharmtox.45.120403.095857
  • Horowitz, A. R., Antignus, Y., & Gerling, D. (2011). Management of Bemisia tabaci whiteflies. In W. M. O. Thompson (Ed.), The whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with geminivirus-infected host plants: Bemisia tabaci, host plants and geminiviruses (pp. 293–322). Springer.
  • Hu, Q. B., An, X. C., Jin, F. L., Freed, S., & Ren, S. X. (2009). Toxicities of destruxins against Bemisia tabaci and its natural enemy, Serangium japonicum. Toxicon, 53(1), 115–121. https://doi.org/10.1016/j.toxicon.2008.10.019
  • Huang, H. S., Hu, N. T., Yao, Y. E., Wu, C. Y., Chiang, S. W., & Sun, C. N. (1998). Molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the diamondback moth, Plutella xylostella. Insect Biochemistry and Molecular Biology, 28(9), 651–658. https://doi.org/10.1016/S0965-1748(98)00049-6
  • Iga, M., & Kataoka, H. (2012). Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes. Biological and Pharmaceutical Bulletin, 35(6), 838–843. https://doi.org/10.1248/bpb.35.838
  • Karunker, I., Benting, J., Lueke, B., Ponge, T., Nauen, R., Roditakis, E., … Morin, S. (2008). Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochemistry and Molecular Biology, 38(6), 634–644. https://doi.org/10.1016/j.ibmb.2008.03.008
  • Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357–360. https://doi.org/10.1038/nmeth.3317
  • Kim, K. I., & van de Wiel, M. A. (2008). Effects of dependence in high-dimensional multiple testing problems. BMC Bioinformatics, 9(1), 1–12. https://doi.org/10.1186/1471-2105-9-1
  • Langmead, B., & Salzberg, S. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 354–357. https://doi.org/10.1038/nmeth.1923
  • Liao, M., Li, S., Wu, H., Gao, Q., Shi, S., Huang, Y., & Cao, H. (2022). Transcriptomic analysis of Sitophilus zeamais in response to limonene fumigation. Pest Management Science, 78(11), 4774–4782. https://doi.org/10.1002/ps.7097
  • Liu, B. L., & Tzeng, Y. M. (2012). Development and applications of destruxins: A review. Biotechnology Advances, 30(6), 1242–1254. https://doi.org/10.1016/j.biotechadv.2011.10.006
  • Liu, N., Li, M., Gong, Y., Liu, F., & Li, T. (2015). Cytochrome P450s – Their expression, regulation, and role in insecticide resistance. Pesticide Biochemistry and Physiology, 120, 77–81. https://doi.org/10.1016/j.pestbp.2015.01.006
  • Lu, K., Song, Y., & Zeng, R. (2021). The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics. Current Opinion in Insect Science, 43, 103–107. https://doi.org/10.1016/j.cois.2020.11.004
  • Lumjuan, N., McCarroll, L., Prapanthadara, L. A., Hemingway, J., & Ranson, H. (2005). Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochemistry and Molecular Biology, 35(8), 861–871. https://doi.org/10.1016/j.ibmb.2005.03.008
  • Meng, X., Hu, J., Xu, X., Wang, Z., Hu, Q., Jin, F., & Ren, S. (2013). Toxic effect of destruxin A on abnormal wing disc-like (SLAWD) in Spodoptera litura fabricius (Lepidoptera: Noctuidae). PLoS One, 8(2), e57213. https://doi.org/10.1371/journal.pone.0057213
  • Oliveira, M. R. V., Henneberry, T. E., & Anderson, P. (2001). History, current status, and collaborative research projects for Bemisia tabaci. Crop Protection, 20(9), 709–723. https://doi.org/10.1016/S0261-2194(01)00108-9
  • Pal, S., Leger, R. J. S., & Wu, L. P. (2007). Fungal peptide Destruxin A plays a specific role in suppressing the innate immune response in Drosophila melanogaster. Journal of Biological Chemistry, 282(12), 8969–8977. https://doi.org/10.1074/jbc.M605927200
  • Pavlidi, N., Vontas, J., & Van Leeuwen, T. (2018). The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Current Opinion in Insect Science, 27, 97–102. https://doi.org/10.1016/j.cois.2018.04.007
  • Pedras, M. S. C., Zaharia, L. I., & Ward, D. E. (2002). The destruxins: Synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry, 59(6), 579–596. https://doi.org/10.1016/S0031-9422(02)00016-X
  • Perring, T. M., Stansly, P. A., Liu, T. X., Smith, H. A., & Andreason, S. A.. (2018). Sustainable Management of Arthropod Pests of Tomato. Academic Press: Cambridge (pp. 73–110). Cambridge: Academic Press. https://doi.org/10.1016/B978-0-12-802441-6.00004-8
  • Polston, J. E., De Barro, P., & Boykin, L. M. (2014). Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. Pest Management Science, 70(10), 1547–1552. https://doi.org/10.1002/ps.3738
  • Rani, B., & Sharma, V. K. (2017). Transcriptome profiling: Methods and applications-A review. Agricultural Reviews, 38(4), 271–281.
  • Ranson, H., Rossiter, L., Ortelli, F., Jensen, B., Wang, X., Roth, C. W., Collins, F. H., & Hemingway, J. (2001). Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochemical Journal, 359(2), 295–304. https://doi.org/10.1042/bj3590295
  • Rauch, N., & Nauen, R. (2003). Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 54(4), 165–176.
  • Ríos-Moreno, A., Garrido-Jurado, I., Resquín-Romero, G., Arroyo-Manzanares, N., Arce, L., & Quesada-Moraga, E. (2016). Destruxin A production by Metarhizium brunneum strains during transient endophytic colonisation of Solanum tuberosum. Biocontrol Science and Technology, 26(11), 1574–1585. https://doi.org/10.1080/09583157.2016.1223274
  • Scott, J. G. (2008). Insect cytochrome P450s: Thinking beyond detoxification. Recent Advances in Insect Physiology, Toxicology and Molecular Biology, 117–124.
  • Shadmany, M., Boykin, L. M., Muhamad, R., & Omar, D. (2019). Genetic diversity of Bemisia tabaci (Hemiptera: Aleyrodidae) species complex across Malaysia. Journal of Economic Entomology, 112(1), 75–84. https://doi.org/10.1093/jee/toy273
  • Shah, R., Al-Sadi, A. M., Scott, I. M., AlRaeesi, A., & AlJahdhami, A. A. (2020). Insecticide resistance monitoring in whitefly (Bemisia tabaci)(Hemiptera: Aleyrodidae) in Oman. Journal of Asia-Pacific Entomology, 23(4), 1248–1254. https://doi.org/10.1016/j.aspen.2020.09.018
  • Strasser, H., Vey, A., & Butt, T. M. (2000). Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Science and Technology, 10(6), 717–735. https://doi.org/10.1080/09583150020011690
  • Wang, J., Hu, W., & Hu, Q. (2019). BmTudor-sn is a binding protein of destruxin A in silkworm Bm12 cells. Toxins, 11(2), 67. https://doi.org/10.3390/toxins11020067
  • Wang, J., Weng, Q., Yin, F., & Hu, Q. (2020). Interactions of destruxin a with silkworms’ arginine tRNA synthetase and lamin-C proteins. Toxins, 12(2), 137. https://doi.org/10.3390/toxins12020137
  • Wang, J., Weng, Q., Zhang, K., & Hu, Q. (2023). Binding proteins of destruxin A from metarhizium against insect cell. BMC Microbiology, 23(1), 96. https://doi.org/10.1186/s12866-023-02843-8
  • Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10(1), 57–63. https://doi.org/10.1038/nrg2484
  • Yan, S., Cui, F., & Qiao, C. (2009). Structure, function and applications of carboxylesterases from insects for insecticide resistance. Protein and Peptide Letters, 16(10), 1181–1188. https://doi.org/10.2174/092986609789071243
  • Yin, X., Peng, H., Weng, Q., Hu, Q., & Wang, J. (2022). Interaction of destruxin A with three silkworm proteins: BmCRT, BmDPP3, and BmPDIA5. Molecules, 27(22), 7713. https://doi.org/10.3390/molecules27227713
  • Zhang, C., Yan, S. Q., Shen, B. B., Ali, S., Wang, X. M., Jin, F. L., Cuthbertson, A. G. S., & Qiu, B. L. (2017). RNAi knock-down of the Bemisia tabaci Toll gene (BtToll) increases mortality after challenge with destruxin A. Molecular Immunology, 88, 164–173. https://doi.org/10.1016/j.molimm.2017.06.031
  • Zhu, F., Moural, T. W., Nelson, D. R., & Palli, S. R. (2016). A specialist herbivore pest adaptation to xenobiotics through up-regulation of multiple Cytochrome P450s. Scientific Reports, 6(1), 20421. https://doi.org/10.1038/srep20421
  • Zhuang, H. M., Wang, K. F., Zheng, L., Wu, Z. J., Miyata, T., & Wu, G. (2011). Identification and characterization of a cytochrome P450 CYP6CX1 putatively associated with insecticide resistance in Bemisia tabaci. Insect Science, 18(5), 484–494. doi:10.1111/j.1744-7917.2010.01380.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.