345
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Searching for pathogenic fungi of Passiflora foetida sensu lato in Colombia, South America, with potential for classical biological control in Australia

, ORCID Icon, &
Pages 697-717 | Received 12 Mar 2024, Accepted 25 Apr 2024, Published online: 09 May 2024

References

  • Agrios, G. N. (1997). Plant pathology (4th ed). Academic Press.
  • CABI. (2024). Passiflora foetida. In CABI Compendium. CAB International. https://doi.org/10.1079/cabicompendium.38800
  • Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91(3), 553–556. https://doi.org/10.1080/00275514.1999.12061051
  • Crous, P. W., Wingfield, M. J., Richardson, D. M., & ... Groenewald, J. Z. (2016). Fungal Planet description sheets: 400 – 468. Persoonia - Molecular Phylogeny and Evolution of Fungi, 36(1), 316–458. https://doi.org/10.3767/003158516X692185
  • Cullen, J. M., Kable, P. F., & Catt, M. (1973). Epidemic spread of a rust imported for biological control. Nature, 244(5416), 462–464. https://doi.org/10.1038/244462a0
  • Cullen, J. M., Sheppard, A. W., & Raghu, S. (2022). Effectiveness of classical weed biological control agents released in Australia. Biological Control, 166, 104835. https://doi.org/10.1016/j.biocontrol.2021.104835
  • Department of Agriculture, Fisheries and Forestry. (2021a). Puccinia cnici-oleracei (ex. Conyza) for the biological control of Conyza bonariensis. https://www.agriculture.gov.au/biosecurity-trade/policy/risk-analysis/biological-control-agents/risk-analyses/completed-risk-analyses/ra-release-puccinia-cnici-oleracei (accessed 21 December 2023)
  • Department of Agriculture, Fisheries and Forestry. (2021b). Puccinia rapipes for the biological control of Lycium ferocissimum. https://www.agriculture.gov.au/biosecurity-trade/policy/risk-analysis/biological-control-agents/risk-analyses/completed-risk-analyses/puccinia-rapipes (accessed 21 December 2023)
  • Doyle, J. J., & Doyle, J. L. (1990). Isolate of plant DNA from fresh tissue. Focus, 12(1), 13–15.
  • Eigenbrode, S. D., Bosque-Pérez, N. A., & Davis, T. S. (2018). Insect-borne plant pathogens and their vectors: Ecology, evolution, and complex interactions. Annual Review of Entomology, 63(1), 169–191. https://doi.org/10.1146/annurev-ento-020117-043119
  • Farr, D. F., Rossman, A. Y., & Castlebury, L. A. (2021). United States national fungus collections fungus-host dataset. Ag Data Commons, https://doi.org/10.15482/USDA.ADC/1524414. Accessed 28 December 2023.
  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
  • Fischer, I., & Rezende, J. (2008). Diseases of passion flower (Passiflora spp.). Pest Technology, 2(1), 1–19.
  • GBIF.org. (2023). GBIF occurrence download. https://doi.org/10.15468/dl.63sqev. (Accessed 10 October 2023)
  • Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61(4), 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
  • Gomes, R. R., Glienke, C., Videira, S. I. R., Lombard, L., Groenewald, J. Z., & Crous, P. W. (2013). Diaporthe a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia - Molecular Phylogeny and Evolution of Fungi, 31(1), 1–41. https://doi.org/10.3767/003158513X666844
  • Goolsby, J. A., Van Klinken, R. D., & Palmer, W. A. (2006). Maximising the contribution of native-range studies towards the identification and prioritisation of weed biocontrol agents. Australian Journal of Entomology, 45(4), 276–286. https://doi.org/10.1111/j.1440-6055.2006.00551.x
  • Hennen, J. F., Figueiredo, M. B., de Carvalho, A. A., Hennen, J., & G, P. (2005). Catalogue of the species of plant rust fungi (Uredinales) of Brazil. https://www.gov.br/jbrj/pt-br/centrais-de-conteudo/publicacoes/catalogue.pdf (accessed on 28 December 2023)
  • Hopley, T., Webber, B. L., Raghu, S., Morin, L., & Byrne, M. (2021). Revealing the introduction history and phylogenetic relationships of Passiflora foetida sensu lato in Australia. Frontiers in Plant Science, 12, 1–12. https://doi.org/10.3389/fpls.2021.651805
  • Hunter, G. C., Zeil-Rolfe, I., Jourdan, M., & Morin, L. (2021). Exploring the host range and infection process of Venturia paralias isolated from Euphorbia paralias in France. European Journal of Plant Pathology, 159(4), 811–823. https://doi.org/10.1007/s10658-021-02204-z
  • Ingeniería Sostenible – ISMD. (2013). Mapa de Clasificación del Clima en Colombia según la Temperatura y la Humedad Relativa y listado de municipios. https://ismd.com.co/wp-content/uploads/2017/03/Anexo-No-2-Mapa-de-Clasificaci%C3%B3n-del-Clima-en-Colombia.pdf (accessed on 3 November 2023)
  • Ireland, K. B., Hunter, G. C., Wood, A., Delaisse, C., & Morin, L. (2019). Evaluation of the rust fungus Puccinia rapipes for biological control of Lycium ferocissimum (African boxthorn) in Australia: Life cycle, taxonomy and pathogenicity. Fungal Biology, 123(11), 811–823. https://doi.org/10.1016/j.funbio.2019.08.007
  • Jacques, S., Lenzo, L., Stevens, K., Lawrence, J., & Tan, K. C. (2021). An optimized sporulation method for the wheat fungal pathogen Pyrenophora tritici-repentis. Plant Methods, 17(1), 1–12. https://doi.org/10.1186/s13007-021-00751-4
  • Jucker, T., Long, V., Pozzari, D., Pedersen, D., Fitzpatrick, B., Yeoh, P. B., & Webber, B. L. (2020). Developing effective management solutions for controlling stinking passionflower (Passiflora foetida) and promoting the recovery of native biodiversity in Northern Australia. Biological Invasions, 22, 2737–2748. https://doi.org/10.1007/s10530-020-02295-5
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
  • Lohr, M. T., Lohr, C. A., Keighery, G., & Long, V. (2016). The status and distribution of non-native plants on the gazetted and territorial islands off the north coast of Western Australia. Conservation Science Western Australia, 10(8), 8. [online]. https://www.dpaw.wa.gov.au/CSWAjournal (accessed 12 December 2023)
  • Mäder, G., Zamberlan, P. M., Fagundes, N. J. R., Magnus, T., Salzano, F. M., Bonatto, S. L., & Freitas, L. B. (2010). The use and limits of ITS data in the analysis of intraspecific variation in Passiflora L. (Passifloraceae). Genetics and Molecular Biology, 33(1), 99–108. https://doi.org/10.1590/S1415-47572009005000101
  • McCulloch, G. A., Mauda, E. V., Chari, L. D., Martin, G. D., Gurdasani, K., Morin, L., Walter, G. H., & Raghu, S. (2020). Genetic diversity and morphological variation in African boxthorn (Lycium ferocissimum) – Characterising the target weed for biological control. Biological Control, 143, 104206. https://doi.org/10.1016/j.biocontrol.2020.104206
  • Morales, M. P. (2019). Comparación de la morfología y biología floral de passiflora (Passifloraceae) en especies silvestres y cultivadas en casanare-orinoquía, colombiana. Undergraduate thesis in biology, escuela de ciencias básicas y aplicadas, Universidad de La Salle, Bogotá D.C., Colombia. https://ciencia.lasalle.edu.co/biologia/72 (accessed 6 August of 2023)
  • Morin, L. (2020). Progress in biological control of weeds with plant pathogens. Annual Review of Phytopathology, 58(1), 201–223. https://doi.org/10.1146/annurev-phyto-010820-012823
  • Morin, L., Evans, K. J., & Sheppard, A. W. (2006). Selection of pathogen agents in weed biological control: critical issues and peculiarities in relation to arthropod agents. Australian Journal of Entomology, 45(4), 349–365. https://doi.org/10.1111/j.1440-6055.2006.00562.x
  • Morris, C. E., & Moury, B. (2019). Revisiting the concept of host range of plant pathogens. Annual Review of Phytopathology, 57(1), 63–90. https://doi.org/10.1146/annurev-phyto-082718-100034
  • Ocampo Pérez, J., & Coppens d’Eeckenbrugge, G. (2017). Morphological characterization in the genus Passiflora L.: An approach to understanding its complex variability. Plant Systematics and Evolution, 303(4), 531–558. https://doi.org/10.1007/s00606-017-1390-2
  • Ocampo Pérez, J., Coppens d’Eeckenbrugge, G., Restrepo, M., Jarvis, A., Salazar, M., & Caetano, C. (2007). Diversity of Colombian Passifloraceae: Biogeography and an updated list for conservation. Biota Colombiana, 8(1), 1–45.
  • Ohlsen, D. J. (2020). Passiflora foetida. In P. G. Kodela (Ed.), Flora of Australia. Australian Biological Resources Study, Department of Climate Change, Energy, the Environment and Water. https://profiles.ala.org.au/opus/foa/profile/Passiflora%20foetida (accessed 12 December 2023)
  • Pacheco, T. G., Lopes, A. d. S., Welter, J. F., Yotoko, K. S. C., Otoni, W. C., Vieira, L. d. N., Guerra, M. P., Nodari, R. O., Balsanelli, E., Pedrosa, F. d. O., Maltempi de Souza, E., & Rogalski, M. (2020). Plastome sequences of the subgenus Passiflora reveal highly divergent genes and specific evolutionary features. Plant Molecular Biology, 104(1-2), 21–37. https://doi.org/10.1007/s11103-020-01020-z
  • Paynter, Q. (2024). Prioritizing candidate agents for the biological control of weeds. Biological Control, 188, 105396. https://doi.org/10.1016/j.biocontrol.2023.105396
  • Pollard, K. M., Varia, S., Seier, M. K., & Ellison, C. A. (2021). Battling the biotypes of balsam: The biological control of Impatiens glandulifera using the rust fungus Puccinia komarovii var. glanduliferae in GB. Fungal Biology, 125(8), 637–645. https://doi.org/10.1016/j.funbio.2021.03.005
  • Preece, N., Harvey, K., Hempel, C., & Woinarski, J. C. Z. (2010). Uneven distribution of weeds along extensive transects in Australia’s Northern Territory points to management solutions. Ecological Management & Restoration, 11(2), 127–134. https://doi.org/10.1111/j.1442-8903.2010.00530.x
  • Ramaiya, S. D., Bujang, J. S., & Zakaria, M. H. (2014). Genetic diversity in passiflora species assessed by morphological and ITS sequence analysis. The Scientific World Journal, 2014, 1. https://doi.org/10.1155/2014/598313
  • R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/
  • Salazar-Yepes, M. (2021). Pucciniales (royas) del Departamento de Antioquia. Universidad Nacional de Colombia, Sede Medellín, Colombia. https://ciencias.medellin.unal.edu.co/centros/centro-editorial/images/libros-gratis/PUCCINIALES_compressed.pdf (accessed 28 December 2023)
  • Schwarzländer, M., Hinz, H. L., Winston, R. L., & Day, M. D. (2018). Biological control of weeds: An analysis of introductions, rates of establishment and estimates of success, worldwide. BioControl, 63(3), 319–331. https://doi.org/10.1007/s10526-018-9890-8
  • Shahin, E. A., & Shepard, J. F. (1979). An efficient technique for inducing profuse sporulation of alternaria species. Phytopathology, 69(6), 618–620. https://doi.org/10.1094/Phyto-69-618
  • Shrestha, B., Weng, M. L., Theriot, E. C., Gilbert, L. E., Ruhlman, T. A., Krosnick, S. E., & Jansen, R. K. (2019). Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of Passiflora subgenus Decaloba. Molecular Phylogenetics and Evolution, 138, 53–64. https://doi.org/10.1016/j.ympev.2019.05.030
  • Somaweera, R., Brien, M. L., Platt, S. G., Manolis, C., & Webber, B. L. (2019). Direct and indirect interactions with vegetation shape crocodylian ecology at multiple scales. Freshwater Biology, 64(2), 257–268. https://doi.org/10.1111/fwb.13221
  • Su, Y. Y., Qi, Y. L., & Cai, L. (2012). Induction of sporulation in plant pathogenic fungi. Mycology, 3(3), 195–200. https://doi.org/10.1080/21501203.2012.719042
  • Svoboda, H. T., & Ballard, H. E. (2018). Phenetic and cladistic studies help clarify species assemblages in Passiflora section Dysosmia (Passifloraceae). Brittonia, 70(1), 15–24. https://doi.org/10.1007/s12228-017-9495-z
  • Tamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molecular Biology and Evolution, 9(4), 678–687. https://doi.org/10.1093/oxfordjournals.molbev.a040752
  • Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), 512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023
  • Thuiller, W., Georges, D., Gueguen, M., Engler, R., Breiner, F., Lafourcade, B., & Patin, R. (2023). Biomod2: Ensemble Platform for Species Distribution Modeling. R package version 4.2-4.
  • Torres, A. G. (2019). Fungos fitopatogênicos associados a Passiflora foetida no Brasil e o seu potencial para uso em controle biológico [Master Thesis]. Universidade Federal de Viçosa. Minas Gerais, Brasil. https://www.locus.ufv.br/bitstream/123456789/26774/1/texto%20completo.pdf (accessed 28 December 2023)
  • Vanderplank, J. (2013). A revision of Passiflora section Dysosmia. Curtis's Botanical Magazine, 30(4), 318–387. https://doi.org/10.1111/curt.12050
  • Weir, B. S., Johnston, P. R., & Damm, U. (2012). The Colletotrichum gloeosporioides species complex. Studies in Mycology, 73, 115–180. https://doi.org/10.3114/sim0011
  • White, T. J., Bruns, T. D, Lee, S. B, & Taylor, J. W.. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A Guide to Methods and Applications (pp. 315–322). Academic Press https://doi.org/10.1016/b978-0-12-372180-8.50042-1
  • Yockteng, R., & Nadot, S. (2004). Phylogenetic relationships among Passiflora species based on the glutamine synthetase nuclear gene expressed in chloroplast (ncpGS). Molecular Phylogenetics and Evolution, 31(1), 379–396. https://doi.org/10.1016/S1055-7903(03)00277-X
  • Zakaria, L. (2023). Fusarium species associated with diseases of major tropical fruit crops. Horticulturae, 9(3), 322. https://doi.org/10.3390/horticulturae9030322