19
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Arthrobotrys oligospora (Fungi: Orbiliales) and its liquid culture filtrate myco-constituents kill Haemonchus contortus infective larvae (Nematoda: trichostrongylidae)

, , ORCID Icon, , , , , , , & show all
Pages 754-775 | Received 17 Oct 2023, Accepted 28 Jun 2024, Published online: 15 Jul 2024

References

  • Adduci, I., Sajovitz, F., Hinney, B., Lichtmannsperger, K., Joachim, A., Wittek, T., & Yan, S. (2022). Haemonchosis in sheep and goats, control strategies and development of vaccines against Haemonchus contortus. Animals, 12(18), 2339. https://doi.org/10.3390/ani12182339
  • Bambou, J. C., Ceï, W., Arquet, R., Calif, V., Bocage, B., Mandonnet, N., & Alexandre, G. (2021). Mixed grazing and dietary supplementation improve the response to gastrointestinal nematode parasitism and production performances of goats. Frontiers in Veterinary Science, 8, 628686. https://doi.org/10.3389/fvets.2021.628686
  • Barron, G. L.. (1977). The nematode destroying fungi. Topics in Mycobiology, 144, 100–150. https://doi.org/10.1002/JOBM.19790190412
  • Besier, R. B., Kahn, L. P., Sargison, N. D., & Van Wyk, J. A. (2016). Advances in parasitology. Advances in Parasitology, 93, 95–143. https://doi.org/10.1016/bs.apar.2016.02.022
  • Castañeda-Ramírez, G. S., Mendoza-de-Gives, P., Aguilar-Marcelino, L., López-Arellano, M. E., & Hernández-Romano, J. (2016). Phylogenetic analysis of nucleotide sequences from the ITS region and biological characterization of nematophagous fungi from Morelos, Mexico. Journal of Mycology, 2016(1), 8502629. https://doi.org/10.1155/2016/8502629
  • Charlier, J., Rinaldi, L., Musella, V., Ploeger, H. W., Chartier, C., Vineer, H. R., & Claerebout, E. (2020). Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe. Preventive Veterinary Medicine, 182, 105103. https://doi.org/10.1016/j.prevetmed.2020.105103
  • Cooke, R. C., & Godfrey, B. E. S. (1964). A key to the nematode-destroying fungi. Transactions of the British Mycological Society, 47(1), 61–74. https://doi.org/10.1016/S0007-1536(64)80081-4
  • Corda, A. K. J. (1839). In G. Fleischer (Ed.), Pracht-Flora europaeischer schimmelbildungen (pp. 43). https://doi.org/10.1080/00222933909512494
  • Correa, C. M., Ferreira, K. R., Abot, A. R., Louzada, J., & Vaz-de-Mello, F. Z. (2022). Ivermectin impacts on dung beetle diversity and their ecological functions in two distinct Brazilian ecosystems. Ecological Entomology, 47(5), 736–748. https://doi.org/10.1111/een.13158
  • Dasenaki, M. E., Kritikou, A. S., & Thomaidis, N. S. (2023). Meat safety: II residues and contaminants. Lawrie's meat Sci, 591–626. https://doi.org/10.1016/B978-0-323-85408-5.00007-8
  • Degenkolb, T., & Vilcinskas, A. (2016a). Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: Metabolites from nematophagous basidiomycetes and non-nematophagous fungi. Applied Microbiology and Biotechnology, 100(9), 3813–3824. https://doi.org/10.1007/s00253-015-7234-5
  • Degenkolb, T., & Vilcinskas, A. (2016b). Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: Metabolites from nematophagous ascomycetes. Applied Microbiology and Biotechnology, 100(9), 3799–3812. https://doi.org/10.1007/s00253-015-7233-6
  • De Hoog, G. S. (1985). Taxonomy of the Dactylaria complex. IV. Dactylaria, neta, subulispora and scolecobasidium. Studies in Mycology, 26, 1–60.
  • De Souza-Chagas, A. C., Tupy, O., Santos, I. B. D., & Esteves, S. N. (2022). Economic impact of gastrointestinal nematodes in morada nova sheep in Brazil. Revista Brasileira de Parasitologia Veterinária, 31, https://doi.org/10.1590/S1984-29612022044
  • Drechsler, C. (1937). Some hyphomycetes that prey on free-living terricolous nematodes. Mycologia, 29(4), 447–552. https://doi.org/10.1080/00275514.1937.12017222
  • Drechsler, C. (1944). A species of Arthrobotrys that captures springtails. Mycologia, 36(4), 382–399. https://doi.org/10.1080/00275514.1944.12017561
  • Flores-Crespo, J., Herrera-Rodríguez, M. T., Mendoza-de Gives, P., Liébano-Hernández, E., Vázquez-Prats, V. M., & López-Arellano, M. E. (2003). The predatory capability of three nematophagous fungi in the control of Haemonchus contortus infective larvae in ovine faeces. Journal of Helminthology, 77(4), 297–303. https://doi.org/10.1079/JOH2003197
  • Haard, K. (1968). Taxonomic studies on the genus Arthrobotrys corda. Mycologia, 60(6), 1140–1159. https://doi.org/10.1080/00275514.1968.12018681
  • Hamza, M. A., Tazi, H., Fossati-Gaschignard, O., Moukhli, A., Lakhtar, H., Ferji, Z., & Mateille, T. (2020). May passive dispersal of fungal enemies with native substrates in olive nurseries help to control phytonematodes? BASE, 24(1), 37–45. https://doi.org/10.25518/1780-4507.18354
  • Higuera-Piedrahita, R. I., Dolores-Hernández, M., de la Cruz-Cruz, H. A., López-Arellano, R., Mendoza-de Gives, P., Olmedo-Juárez, A., Cuéllar-Ordaz, J. A., González-Cortázar, M., Ble-González, E. A., López-Arellano, M. E., & Zamilpa, A. (2023). 3'-demethoxy-6-O-demethylisoguaiacin and norisoguaiacin nematocidal lignans from Artemisia cina against Haemonchus contortus infective larvae. Plants, 12(4), 820. https://doi.org/10.3390/plants12040820
  • Hsueh, Y. P., Gronquist, M. R., Schwarz, E. M., Nath, R. D., Lee, C. H., Gharib, S., & Sternberg, P. W. (2017). Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. Elife, 6, e20023. https://doi.org/10.7554/eLife.20023
  • Jaramillo-Tlalapango, J., Mendoza-de Gives, P., Isabel-Higuera-Piedrahita, R., Ocampo-Gutiérrez, A. Y., López-Arellano, M. E., Pérez-Anzúrez, G., Olmedo-Juárez, A., Hernández-Romano, J., Maza-Lopez, J., Delgado-Núñez, E. J., & González-Cortázar, M. (2023). Study of a Mexican isolate of Arthrobotrys musiformis (orbiliales): predatory behavior and nematocidal activity of liquid culture filtrates against Haemonchus contortus (trichostrongylidae), protein profile and myco-constituent groups. Fungal Biology, 127(10-11), 1345–1361. https://doi.org/10.1016/j.funbio.2023.09.001
  • Jasso-Díaz, G., Torres-Hernández, G., Zamilpa, A., Becerril-Pérez, C. M., Ramírez-Bribiesca, J. E., Hernández-Mendo, O., & Mendoza-de Gives, P. (2022). Full extract and organic phases exhibit nematocidal activity against eggs and infective larvae (L). Helminthologia, 59(1), 46–54. https://doi.org/10.2478/helm-2022-0001
  • Jiang, X., Xiang, M., & Liu, X. (2017). Nematode-Trapping fungi. The Fungal Kingdom, 963–974. https://doi.org/10.1128/9781555819583.ch47
  • Kamiya, T., Watanabe, M., Hara, H., Mitsugi, Y., Yamaguchi, E., Itoh, A., & Adachi, T. (2018). Induction of human-lung-cancer-A549-cell apoptosis by 4-hydroperoxy-2-decenoic acid ethyl ester through intracellular ROS accumulation and the induction of proapoptotic CHOP expression. Journal of Agricultural and Food Chemistry, 66(41), 10741–10747. https://doi.org/10.1021/acs.jafc.8b04424
  • Kumar, A., Kaur, S., & Dhiman, S. (2021). 1,2-benzenedicarboxylic acid, bis (2-methyl propyl) ester isolated from Onosma bracteata wall. Inhibits MG-63 cells proliferation via Akt-p53-cyclin pathway. Research Square, https://doi.org/10.21203/rs.3.rs-182390/v1
  • Kuo, T. H., Yang, C. T., Chang, H. Y., Hsueh, Y. P., & Hsu, C. C. (2020). Nematode-trapping fungi produce diverse metabolites during predator–prey interaction. Metabolites, 10(3), 117. https://doi.org/10.3390/metabo10030117
  • Liou, G. Y., & Tzean, S. S. (1997). Phylogeny of the genus Arthrobotrys and allied nematode-trapping fungi based on rDNA sequences. Mycologia, 89(6), 876–884. https://doi.org/10.1080/00275514.1997.12026858. https://www.jstor.org/stable/3762283
  • Manzano, P., Magdama, F., Orellana-Manzano, A., Ruiz-Barzola, O., Miranda, M., Orellana, T., & Peralta, E. (2023). Bioactive compounds against Moniliophthora roreri (Cif & Par) identified in locally produced liquid amendments (biols). Revista Facultad Nacional de Agronomía Medellín, 76(2), 10323–10333. https://doi.org/10.15446/rfnam.v76n2.99365
  • Mendoza-de Gives, P. (2022). Soil-Borne nematodes: Impact in agriculture and livestock and sustainable strategies of prevention and control with special reference to the use of nematode natural enemies. Pathogens (Basel, Switzerland), 11(6), 640. https://doi.org/10.3390/pathogens11060640
  • Mendoza-de Gives, P., Crespo, J. F., Rodriguez, D. H., Prats, V. V., Hernandez, E. L., & Fernandez, G. O. (1998). Biological control of Haemonchus contortus infective larvae in ovine faeces by administering an oral suspension of Duddingtonia flagrans chlamydospores to sheep. Journal of Helminthology, 72(4), 343–347. https://doi.org/10.1017/S0022149X00016710
  • Mendoza-de Gives, P., Rodríguez-Labastida, M., Olmedo-Juárez, A., Gamboa-Angulo, M. M., & Reyes-Estebanez, M. (2022). A nematode crude extract acts as an elicitor of the nematocidal activity of nematophagous fungi liquid culture filtrates against Haemonchus contortus (nematoda: Trichostrongylidae). Acta Parasitologica, 67(2), 678–686. https://doi.org/10.1007/s11686-021-00502-4
  • Mendoza-de Gives, P., & Vazquez-Prats, V. M. (1994). Reduction of Haemonchus contortus infective larvae by three nematophagous fungi in sheep faecal cultures. Veterinary Parasitology, 55(3), 197–203. https://doi.org/10.1016/0304-4017(93)00646-G
  • Mohamad, O. A., Li, L., Ma, J. B., Hatab, S., Xu, L., Guo, J. W., & Li, W. J. (2018). Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against verticillium dahliae. Frontiers in Microbiology, 9, 924. https://doi.org/10.3389/fmicb.2018.00924
  • Moore, M. L., & Miller, C. S. (1942). Dicarboxylic acid derivatives of sulfonamides1. Journal of the American Chemical Society, 64(7), 1572–1576. https://doi.org/10.1021/ja01259a023
  • Needleman, A. L., Wright, M. C., Schaefer, J. J., Videla, R., & Lear, A. S. (2022). Copper oxide wire particles effective against gastrointestinal nematodes in adult alpacas during a randomized clinical trial. American Journal of Veterinary Research, 83(11), 1–5. https://doi.org/10.2460/ajvr.22.07.0115
  • Nordbring-Hertz, B. (2004). Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora - an extensive plasticity of infection structures. Mycologist, 18(3), 125–133. https://doi.org/10.1017/S0269915X04003052
  • Nordbring-Hertz, B., Hans-Börje, J., & Tunlid, A. (2006). Nematophagous Fungi. https://doi.org/10.1038/npg.els.0004293.
  • Ocampo-Gutiérrez, A. Y., Hernández-Velázquez, V. M., Aguilar-Marcelino, L., Cardoso-Taket, A., Zamilpa, A., López-Arellano, M. E., González-Cortázar, M., Hernández-Romano, J., Reyes-Estebanez, M., & Mendoza-de Gives, P. (2021). Morphological and molecular characterization, predatory behaviour and effect of organic extracts of four nematophagous fungi from Mexico. Fungal Ecology, 49, 101004. https://doi.org/10.1016/j.funeco.2020.101004
  • Olmedo-Juárez, A., Rojo-Rubio, R., Zamilpa, A., Mendoza-de Gives, P., Arece-García, J., López-Arellano, M. E., & von Son-de Fernex, E. (2017). In vitro larvicidal effect of a hydroalcoholic extract from acacia cochliacantha leaf against ruminant parasitic nematodes. Veterinary Research Communications, 41(3), 227–232. https://doi.org/10.1007/s11259-017-9687-8
  • Pérez-Anzúrez, G., Olmedo-Juárez, A., Von-Son de Fernex, E., Alonso-Díaz, MÁ, Delgado-Núñez, E. J., López-Arellano, M., & Mendoza-de Gives, P. (2022). Arthrobotrys musiformis (orbiliales) kills Haemonchus contortus infective larvae (trichostronylidae) through Its predatory activity and its fungal culture filtrates. Pathogens (Basel, Switzerland), 11(10), 1068. https://doi.org/10.3390/pathogens11101068
  • Persson, I., & Friman, E. (1993). Intracellular proteolytic activity in mycelia of Arthrobotrys oligospora bearing mycoparasitic or nematode trapping structures. Experimental Mycology, 17(3), 182–190. https://doi.org/10.1006/emyc.1993.1017
  • PubChem. (2023). Benzoic acid. National Library of Medicine. https://pubchem.ncbi.nlm.nih.gov/compound/Benzoic-Acid#section=Names-and-dentifiers
  • Raheem, S. W., & Niamah, A. (2021). Contamination methods of milk with pesticides residues and veterinary drugs. IOP Conference Series: Earth and Environmental Science, 877(1), 012003. https://doi.org/10.1088/1755-1315/877/1/012003
  • Sabatini, G. A., de Almeida Borges, F., Claerebout, E., Gianechini, L. S., Höglund, J., Kaplan, R. M., & Woodgate, R. (2023). Practical guide to the diagnostics of ruminant gastrointestinal nematodes, liver fluke and lungworm infection: Interpretation and usability of results. Parasites & Vectors, 16(1), 58. https://doi.org/10.1186/s13071-023-05680-w
  • Sanyal, P. K., Sarkar, A. K., Patel, N. K., Mandal, S. C., & Pal, S. (2007). Influence of media type, temperature and pH on in vitro growth profiles of Chhattisgarh isolates of Arthrobotrys oligospora and Duddingtonia flagrans. Vet. Parasitol, 21(2), 161–164.
  • SAS Institute. (2006). SAS user’s guide: Statistics. Version 9.0. Cary. SAS.
  • Schenk, S., Kendrick, W. B., & Pramer, D. (1977). A new nematode-trapping species and a reevaluation of Dactylaria and Artrobotrys. Canadian Journal of Botany, 55(8), 977–985. https://doi.org/10.1139/b77-115
  • Souza dos Santos, G., Rangel, K. C., Teixeira, T. R., Gaspar, L. R., Abreu-Filho, P. G., Pereira, L. M., & Debonsi, H. M. (2020). GC-MS analysis, bioactivity-based molecular networking and antiparasitic potential of the antarctic alga Desmarestia Antarctica. Planta Medica International Open, 7((03|3)), e122–e132. https://doi.org/10.1055/a-1219-2207
  • Stadalienė, I., Petkevičius, S., & Šarkūnas, M. (2014). The impact of grazing management on seasonal activity of gastrointestinal parasites in goats. Helminthologia, 51(2), 103–111. https://doi.org/10.2478/s11687-014-0217-8
  • Suresh, P. (2020). Effects of Pterocarpus marsupium in the management of type 2 diabetes mellitus. Drug Development for Cancer and Diabetes, 219. https://doi.org/10.1201/9780429330490-19
  • Szewc, M., De Waal, T., & Zintl, A. (2021). Biological methods for the control of gastrointestinal nematodes. The Veterinary Journal, 268, 105602. https://doi.org/10.1016/j.tvjl.2020.105602
  • Tian, X., Lu, M., Bu, Y., Zhang, Y., Aimulajiang, K., Liang, M., & Li, X. (2022). Immunization with recombinant Haemonchus contortus Y75B8A.8 partially protects local crossbred female goats from Haemonchus contortus infection. Frontiers in Veterinary Science, 9, https://doi.org/10.3389/fvets.2022.765700
  • Tigano-Milani, M. S., Honeycutt, R. J., Lacey, L. A., Assis, R., Mcclelland, M., & Sobral, B. W. S. (1995). Genetic variability of Paecilomyces fumosoroseus isolates revealed by molecular markers. Journal of Invertebrate Pathology, 65(3), 274–282. https://doi.org/10.1006/jipa.1995.1042
  • Verdú, J. R., Lobo, J. M., Sánchez-Piñero, F., Gallego, B., Numa, C., Lumaret, J. P., & Durán, J. (2018). Ivermectin residues disrupt dung beetle diversity, soil properties and ecosystem functioning: An interdisciplinary field study. Science of The Total Environment, 618, 219–228. https://doi.org/10.1016/j.scitotenv.2017.10.331
  • Wahane, N., Sanyal, P. K., & Pal, S. (2018). Assessment of in vitro growth and predation of arthrobotrys oligospora to haemonchus contortus under the influence of media type and age of mycelium. Indian Journal of Small Rum (The), 24(2), 298–303. https://doi.org/10.5958/0973-9718.2018.00043.0
  • Wang, D., Ma, N., Rao, W., & Zhang, Y. (2023). Recent advances in life history transition with nematode-trapping fungus Arthrobotrys oligospora and its application in sustainable agriculture. Pathogens (Basel, Switzerland), 12(3), 367. https://doi.org/10.3390/pathogens12030367
  • White, T. J., Bruns, T. D., Lee, S. B., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, T. J. Shinsky, & J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315). Academic Press Inc. https://doi.org/10.1016/b978-0-12-372180-8.50042-1
  • Wijayawardene, N. N., Dai, D. Q., Jayasinghe, P. K., Gunasekara, S. S., Nagano, Y., Tibpromma, S., & Boonyuen, N. (2022). Ecological and oceanographic perspectives in future marine fungal taxonomy. Journal of Fungi, 8(11), 1141. https://doi.org/10.3390/jof8111141
  • Xue, Y. J., Li, E. L., Jing, C. X., Ma, L., & Cai, K. Z. (2018). Isolation, identification and characterization of the nematophagous fungus Arthrobotrys (Monacrosporium) sinense from China. Acta Parasitologica, 63(2), 325–332. https://doi.org/10.1515/ap-2018-0037
  • Zhu, M., Zhang, K.-Q., & Yang, J. (2022). Phospholipase C (AoPLC2) regulates mycelial development, trap morphogenesis, and pathogenicity of the nematode-trapping fungus Arthrobotrys oligospora. Journal of Applied Microbiology, 132(3), 2144–2156. https://doi.org/10.1111/jam.15370

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.