339
Views
8
CrossRef citations to date
0
Altmetric
Articles

English secondary students’ thinking about the status of scientific theories: consistent, comprehensive, coherent and extensively evidenced explanations of aspects of the natural world – or just ‘an idea someone has’

, , &

References

  • Adey, P. (1999). The science of thinking, and science for thinking: A description of cognitive acceleration through science education (CASE). Geneva: Routledge.
  • Adey, P., & Shayer, M. (1994). Really raising standards: Cognitive intervention and academic achievement. London: Routledge.
  • Adey, P., & Shayer, M. (2002). An exploration of long-term far-transfer effects following an extended intervention program in the high school science curriculum. In C. Desforges & R. Fox (Eds.), Teaching and learning: The essential readings (pp. 173–209). Oxford: Routledge.
  • Allchin, D. (2013). Teaching the nature of Science: Perspectives and resources. Saint Paul, MN: Routledge.
  • Antolin, M. F., & Herbers, J. M. (2001). Evolution's struggle for existence in America's public schools. Evolution, 55(12), 2379–2388.
  • Arlin, P. K. (1975). Cognitive development in adulthood: A fifth stage? Developmental Psychology, 11(5), 602–606.
  • Arnold, M., & Millar, R. (1993). Students' understanding of the nature of science: Annotated bibliography (Vol. Working paper 11). Leeds: Routledge.
  • Ashton-Jones, E., & Thomas, D. K. (1990). Composition, collaboration, and women's ways of knowing: A conversation with Mary Belen. Journal of Advanced Composition, 10(2), 275–292.
  • Barbour, I. G. (2000). When science meets religion: Enemies, strangers or partners? San Francisco, CA: Routledge.
  • Bell, B. (1995). Interviewing: A technique for assessing science knowledge. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools: Research reforming practice (pp. 347–364). Mahwah, NJ: Routledge.
  • Billingsley, B., Taber, K. S., Riga, F., & Newdick, H. (2013). Secondary school students' epistemic insight into the relationships between science and religion – a preliminary enquiry. Research in Science Education, 43, 1715–1732. doi:10.1007/s11165-012-9317-y
  • Bliss, J. (1995). Piaget and after: The case of learning science. Studies in Science Education, 25, 139–172.
  • Bloor, D. (1991). Knowledge and social imagery (2nd ed.). Chicago, IL: Routledge.
  • Brown, S., Fauvel, J., & Finnegan, R. (Eds.). (1981). Conceptions of inquiry. London: Routledge.
  • Bruner, J. S. (1960). The process of education. New York, NY: Routledge.
  • Carey, S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989). ‘An experiment is when you try it and see if it works’: A study of grade 7 students' understanding of the construction of scientific knowledge. International Journal of Science Education, 11(5), 514–529. doi:10.1080/0950069890110504
  • Carey, S., & Smith, C. (1993). On understanding the nature of scientific knowledge. Educational Psychologist, 28(3), 235–251. doi:10.1207/s15326985ep2803_4
  • Chalmers, A. F. (1982). What is this thing called science? (2nd ed.). Milton Keynes: Routledge.
  • Clough, M. P., & Olson, J. K. (2008). Teaching and assessing the nature of science: An introduction. Science & Education, 17(2–3), 143–145.
  • Commons, M. L., Richards, F. A., & Armon, C. (Eds.). (1984). Beyond formal operations: Late adolescent and adult cognitive development. New York, NY: Routledge.
  • Dagher, Z. R., Brickhouse, N. W., Shipman, H., & Letts, W. J. (2004). How some college students represent their understandings of the nature of scientific theories. International Journal of Science Education, 26(6), 735–755. doi:10.1080/0950069032000138806
  • Demetriou, A., & Mouyi, A. (2011). Processing efficiency, representational capacity, and reasoning: modelling their dynamic interactions. In P. Barrouillet & V. Gaillard (Eds.), Cognitive development and working memory: A dialogue between Neo-Piagetian theories and cognitive approaches (pp. 69–103). Hove: Routledge.
  • Demetriou, A., Spanoudis, G., & Mouyi, A. (2011). Educating the developing mind: Towards an overarching paradigm. Educational Psychology Review, 23(4), 601–663. doi:10.1007/s10648-011-9178-3
  • DfEE/QCA. (1999). Science: The national curriculum for England, key stages 1-4. London: Routledge.
  • Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people's images of science. Buckingham: Routledge.
  • Duschl, R. A. (2000). Making the nature of science explicit. In R. Millar, J. Leach & J. Osborne (Eds.), Improving science education: The contribution of research (pp. 187–206). Buckingham: Routledge.
  • Eastwood, J. L., Schlegel, W. M., & Cook, K. L. (2011). Effects of an interdiscilpinary program on students' reasoning with socioscientific issues and perceptions of their learning experiences. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom: Teaching, learning and research (pp. 89–126). Dordrecht: Routledge.
  • Feyerabend, P. (1988/1975). Against method (Revised ed.). London: Routledge.
  • Francis, L. J., Fulljames, P., & Gibson, H. M. (1992). Does creationism commend the gospel? A developmental study among 11-17 year olds. Religious Education, 87, 19–27.
  • Fulljames, P., Gibson, H. M., & Francis, L. J. (1991). Creationism, scientism, christianity and science: A study in adolescent attitudes. British Educational Research Journal, 17(2), 171–190.
  • Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155–170.
  • Gilbert, J. K., Watts, D. M., & Osborne, R. J. (1985). Eliciting student views using an interview-about-instances technique. In L. H. T. West & A. L. Pines (Eds.), Cognitive structure and conceptual change (pp. 11–27). London: Routledge.
  • Hammer, D., & Elby, A. (2000). Epistemological resources. In B. Fishman & S. O'Connor-Divelbiss (Eds.), Fourth international conference of the learning sciences (pp. 4–5). Mahwah, NJ: Erlbaum.
  • Hansson, L., & Redfors, A. (2007). Physics and the possibility of a religious view of the Universe: Swedish upper secondary students' views. Science & Education, 16(3–5), 461–478. doi:10.1007/s11191-006-9036-8
  • Hennessy, S. (1993). Situated cognition and cognitive apprenticeship: implications for classroom learning. Studies in Science Education, 22, 1–41.
  • Hodson, D. (2009). Teaching and learning about science: Language, theories, methods, history, traditions and values. Rotterdam: Routledge.
  • Hodson, D. (2014). Nature of Science in the Science Curriculum: Origin, Development, Implications and Shifting Emphases. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 911–970): Routledge.
  • Hofer, B. K., & Pintrich, P. R. (1997). The development of epistemological theories: Beliefs about Knowledge and Knowing and their relation to learning. Review of Educational Research, 67(1), 88–140.
  • Jenkins, E. W. (1979). From Armstrong to Nuffield: Studies in twentieth-century science education in England and Wales. London: Routledge.
  • Johnson, S. (Ed.). (2004). Teaching ideas and evidence in science at key stage 3. London: Routledge.
  • Kadvany, J. (2001). Kuhn, Popper, Feyerabend, Lakatos Imre Lakatos and the Guises of reason (pp. 147–155). Durham: Routledge.
  • Kang, S., Scharmann, L. C., & Noh, T. (2005). Examining students' views on the nature of science: Results from Korean 6th, 8th, and 10th graders. Science Education, 89(2), 314–334. doi:10.1002/sce.20053
  • Kirch, S. A. (2012). Understanding scientific uncertainty as a teaching and learning goal. In B. J. Fraser, K. Tobin & C. J. McRobbie (Eds.), Second international handbook of science education (Vol. 24, pp. 851–864): Routledge.
  • Kitchener, R. F. (1993). Piaget's epistemic subject and science education: Epistemological vs. psychological issues. Science & Education, 2(2), 137–148. doi:10.1007/bf00592203
  • Kohlberg, L., & Hersh, R. H. (1977). Moral development: A review of the theory. Theory Into Practice, 16(2), 53–59. doi:10.1080/00405847709542675
  • Kramer, D. A. (1983). Post-formal operations? A need for further conceptualization. Human Development, 26, 91–105.
  • Kuhn, D. (1999). A developmental model of critical thinking. Educational Researcher, 28(2), 16–46.
  • Kuhn, D. (2006). Do cognitive changes accompany developments in the adolescent brain? Perspectives on Psychological Science, 1(1), 59–67. doi:10.1111/j.1745-6924.2006.t01-2-.x
  • Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). Chicago, IL: Routledge.
  • Kuhn, T. S. (1974/1977). Second thoughts on paradigms. In T. S. Kuhn (Ed.), The essential tension: Selected studies in scientific tradition and change (pp. 293–319). Chicago, IL: Routledge.
  • Lakatos, I. (1971/1978). History of science and its rational reconstructions. In J. Worrall & G. Currie (Eds.), The methodology of scientific research programmes (Vol. 1, pp. 102–138). Cambridge: Routledge.
  • Lave, J., & Wenger, E. (1991). Situated cognition: Legitimate peripheral participation. Cambridge: Routledge.
  • Lawson, A. E. (2010). Teaching inquiry science in middle and secondary schools. Thousand Oaks, CA: Routledge.
  • Leach, J., & Scott, P. (2002). Designing and evaluating science teaching sequences: An approach drawing upon the concept of learning demand and a social constructivist perspective on learning. Studies in Science Education, 38, 115–142.
  • Leach, J., & Scott, P. H. (2008). Teaching for conceptual understanding: An approach drawing upon individual and sociocultural perspectives. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 647–675). New York, NY: Routledge.
  • Lederman, N. G., & Lederman, J. S. (2012). Nature of scientific knowledge and scientific inquiry: Building instructional capacity through professional development. In B. J. Fraser, K. G. Tobin & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 335–359). Dordrecht: Springer.
  • Lederman, N. G., & Lederman, J. S. (2014). Research on teaching and learning of nature of science. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. 2, pp. 600–620). New York, NY: Routledge.
  • Levinson, R. (2011). Teaching controversial issues in science. In R. Toplis (Ed.), How science works: Exploring effective pedagogy and practice (pp. 56–70). Abingdon: Routledge.
  • Lipman, M. (1998). Teaching students to think reasonably: Some findings of the philosophy for children program. The Clearing House, 71(5), 277–280.
  • Long, D. E. (2011). Evolution and religion in American education: An ethnography. Dordrecht: Routledge.
  • Mackenzie, J., Good, R., & Brown, J. (2014). Postmodernism and science education: An appraisal. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1057–1086). Dordrecht: Routledge.
  • Mahner, M., & Bunge, M. (1996). Is religious education compatible with science education? Science & Education, 5(2), 101–123. doi:10.1007/bf00428612
  • Mansfield, A. F., & Clinchy, B. M. (2002). Toward the integration of objectivity and subjectivity: Epistemological development from 10 to 16. New Ideas in Psychology, 20(2–3), 225–262. doi:10.1016/S0732-118X(02)00008-9
  • Martin-Hansen, L. M. (2008). First-year college students' conflict with religion and science. Science & Education, 17, 317–357. doi:10.1007/s11191-006-9039-5
  • Matthews, M. R. (1994). Science teaching: The role of history and philosophy of science. London: Routledge.
  • Matthews, M. R. (2002). Constructivism and science education: A further appraisal. Journal of Science Education and Technology, 11(2), 121–134.
  • Matthews, M. R. (2004). Thomas Kuhn's impact on science education: What lessons can be learned? Science Education, 88(1), 90–118. doi:10.1002/sce.10111
  • McComas, W. F. (1998). The Nature of science in science education: Rationales and strategies. Dordrecht: Routledge.
  • Millar, R., & Osborne, J. (1998). Beyond 2000: Science education for the future. London: Routledge.
  • National Statistics. (2008, 5 December). Census 2001 – Profiles – England. Retrieved 5th December 2008, from http://www.statistics.gov.uk/census2001/profiles/64-A.asp
  • Osborne, J. (2014). Scientific practices and inquiry in the science classroom. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. 2, pp. 579–599). New York, NY: Routledge.
  • Palmer, B., & Marra, R. M. (2004). College student epistemological perspectives across knowledge domains: A proposed grounded theory. Higher Education, 47(3), 311–335.
  • Perry, W. G. (1970). Forms of intellectual and ethical development in the college years: A scheme. New York, NY: Routledge.
  • Piaget, J. (1929/1973). The child's conception of the world (J. Tomlinson & A. Tomlinson, Trans.). St. Albans: Routledge.
  • Piaget, J. (1950/2001). The psychology of intelligence (M. Piercy & D. E. Berlyne, Trans.). London: Routledge.
  • Piaget, J. (1970/1972). The principles of genetic epistemology (W. Mays, Trans.). London: Routledge.
  • Popper, K. R. (1934/1959). The logic of scientific discovery. London: Routledge.
  • QCA. (2002). Changes to assessment 2003: Guidance for teachers of KS3 science. London: Routledge.
  • QCA. (2004). Religious education: The non-statutory national framework. London: Routledge.
  • QCA. (2005). Science: 2004/5 annual report on curriculum and assessment. London: Routledge.
  • QCA. (2007a). Science: Programme of study for key stage 3 and attainment targets. London: Routledge.
  • QCA. (2007b). Science: Programme of study for key stage 4. London: Routledge.
  • Reiss, M. J. (2008). Should science educators deal with the science/religion issue? Studies in Science Education, 44(2), 157–186. doi:10.1080/03057260802264214
  • Roberts, D. A., & Bybee, R. W. (2014). Scientific literacy, science literacy, and science education. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. 2, pp. 545–558). New York, NY: Routledge.
  • Rutledge, M., & Warden, M. (2000). Evolutionary theory, the nature of science and high school biology teachers: Critical relationships. American Biology Teacher, 62, 23–31.
  • Sadler, T. D., Klosterman, M. L., & Topcu, M. S. (2011). Learning science content and socio-scientific reasoning through classroom explorations of global climate change. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom: Teaching, learning and research (pp. 45–77). Dordrecht: Routledge.
  • Schutz, A., & Luckmann, T. (1973). The structures of the life-world (R. M. Zaner & H. T. Engelhardt, Trans.). Evanston, IL: Routledge.
  • Schwab, J. J. (1962). The teaching of science as enquiry (The Inglis Lecture, 1961). In J. J. Schwab & P. F. Brandwein (Eds.), The teaching of science. Cambridge, MA: Routledge.
  • Shayer, M., & Adey, P. (1981). Towards a science of science teaching: Cognitive development and curriculum demand. Oxford: Routledge.
  • Sheardy, R. D. (Ed.). (2010). Science education and civic engagement: The SENCER approach. Washington, DC: Routledge.
  • Silcock, P. (2013). Should the Cambridge primary review be wedded to Vygotsky? Education 3–13, 41(3), 316–329. doi:10.1080/03004279.2011.586641
  • Smardon, R. (2009). Sociocultural and cultural-historical frameworks for science education. In W.-M. Roth & K. Tobin (Eds.), The world of science education: Handbook of research in North America (pp. 15–25). Rotterdam: Routledge.
  • Sternberg, R. J. (2009). A balance theory of wisdom. In J. C. Kaufman & E. L. Grigorenko (Eds.), The essential Sternberg: Essays on intelligence, psychology and education (pp. 353–375). New York, NY: Routledge.
  • Strauss, A., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory (2nd ed.). Thousand Oaks, CA: Routledge.
  • Sutherland, P. (1992). Cognitive development today: Piaget and his critics. London: Routledge.
  • Taber, K. S. (2006). Exploring pupils' understanding of key ‘nature of science’ terms through research as part of initial teacher education. School Science Review, 87(321), 51–61.
  • Taber, K. S. (2008a). Exploring conceptual integration in student thinking: Evidence from a case study. International Journal of Science Education, 30(14), 1915–1943. doi:10.1080/09500690701589404
  • Taber, K. S. (2008b). Towards a curricular model of the nature of science. Science & Education, 17(2–3), 179–218. doi:10.1007/s11191-006-9056-4
  • Taber, K. S. (2009). Progressing science education: Constructing the scientific research programme into the contingent nature of learning science. Dordrecht: Routledge.
  • Taber, K. S. (2011a). Constructivism as educational theory: Contingency in learning, and optimally guided instruction. In J. Hassaskhah (Ed.), Educational theory (pp. 39–61). New York, NY: Routledge. Retrieved from https://camtools.cam.ac.uk/wiki/eclipse/Constructivism.html.
  • Taber, K. S. (2011b). The natures of scientific thinking: Creativity as the handmaiden to logic in the development of public and personal knowledge. In M. S. Khine (Ed.), Advances in the nature of science researchconcepts and methodologies (pp. 51–74). Dordrecht: Routledge.
  • Taber, K. S. (2013). Modelling learners and learning in science education: Developing representations of concepts, conceptual structure and conceptual change to inform teaching and research. Dordrecht: Springer.
  • Taber, K. S., Billingsley, B., Riga, F., & Newdick, H. (2011a). Secondary students' responses to perceptions of the relationship between science and religion: Stances identified from an interview study. Science Education, 95(6), 1000–1025. doi:10.1002/sce.20459
  • Taber, K. S., Billingsley, B., Riga, F., & Newdick, H. (2011b). To what extent do pupils perceive science to be inconsistent with religious faith? An exploratory survey of 13-14 year-old English pupils. Science Education International, 22(2), 99–118.
  • Taylor, J., & Hunt, A. (2014). History and philosophy of science and the teaching of science in England. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 2045–2081): Routledge.
  • Thagard, P. (1992). Conceptual revolutions. Oxford: Routledge.
  • Toplis, R. (2011). How did we get here? Some background to how science works in the school curriculum. In R. Toplis (Ed.), How science works: Exploring effective pedagogy and practice (pp. 1–13). Abingdon: Routledge.
  • Trickey, S., & Topping, K. J. (2004). ‘Philosophy for children’: A systematic review. Research Papers in Education, 19(3), 365–380. doi:10.1080/0267152042000248016
  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Routledge.
  • Watts, M., & Gilbert, J. K. (1983). Enigmas in school science: Students' conceptions for scientifically associated words. Research in Science and Technological Education, 1(2), 161–171.
  • White, R. T., & Gunstone, R. F. (1992). Probing understanding. London: Routledge.
  • Williams, J. (2011). How do scientists work? In R. Toplis (Ed.), How science works: Exploring effective pedagogy and practice (pp. 31–43). Abingdon: Routledge.
  • Wood, D. (1988). How children think and learn: The social contexts of cognitive development. Oxford: Routledge.
  • Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis: Theory, research, and practice. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (Vol. 2, pp. 697–726). New York, NY: Routledge.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.