527
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Low-temperature hydrothermal synthesis of N-doped TiO2 from small-molecule amine systems and their photocatalytic activity

, , , &
Pages 2939-2949 | Received 16 Dec 2011, Accepted 20 Aug 2012, Published online: 03 Oct 2012

REFERENCES

  • A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev. 97 (1997), pp. 2373–2419. doi: 10.1021/cr960406n
  • A. Fujishima, T.N. Rao, and D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobio. C 1 (2000), pp. 1–21. doi: 10.1016/S1389-5567(00)00002-2
  • T. Sasaki, N. Koshizaki, J.W. Yoon, and K.M. Beck, Preparation of Pt/TiO2 nanocomposite thin films by pulsed laser deposition and their photoelectrochemical behaviors, J. Photoch. Photobio. A 145 (2001), pp. 11–16. doi: 10.1016/S1010-6030(01)00558-5
  • N. Bao, Y. Li, Z.T. Wei, G.B. Yin, and J.J. Niu, Adsorption of dyes on hierarchical mesoporous TiO2 fibers and its enhanced photocatalytic properties, J. Phys. Chem. C 115 (2011), pp. 5708–5719. doi: 10.1021/jp1100939
  • J.S. Jang, S.H. Choi, H. Park, W. Choi, and J.S. Lee, A composite photocatalyst of CdS nanoparticles deposited on TiO2 nanosheets, J. Nanosci. Nanotechnol. 6 (2006), pp. 3642–3646. doi: 10.1166/jnn.2006.073
  • I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal, J. Mol. Catal. A: Chem. 161 (2000), pp. 205–212. doi: 10.1016/S1381-1169(00)00362-9
  • R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001), pp. 269–271. doi: 10.1126/science.1061051
  • T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, and S. Sugihara, Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Appl. Catal. B: Environ. 42 (2003), pp. 403–409. doi: 10.1016/S0926-3373(02)00269-2
  • T. Ohsawa, I. Lyubinetsky, Y. Du, M.A. Henderson, V. Shutthanandan, and S.A. Chambers, Crystallographic dependence of visible-light photoactivity in epitaxial TiO2−xNx anatase and rutile, Phys. Rev. B 79 (2009), pp. 085401/1–7. doi: 10.1103/PhysRevB.79.085401
  • F. Spadavecchia, G. Cappelletti, S. Ardizzone, C.L. Bianchi, S. Cappelli, C. Oliva, P. Scardi, M. Leoni, and P. Fermo, Solar photoactivity of nano-N-TiO2 from tertiary amine: Role of defects and paramagnetic species, Appl. Catal. B: Environ. 96 (2010), pp. 314–322. doi: 10.1016/j.apcatb.2010.02.027
  • Z. Pap, L. Baia, K. Mogyorósi, A. Dombi, A. Oszkó, and V. Danciu, Correlating the visible light photoactivity of N-doped TiO2 with brookite particle size and bridged-nitro surface species, Catal. Commun. 17 (2012), pp. 1–7. doi: 10.1016/j.catcom.2011.10.003
  • W. Guo, Y.H. Shen, B. Gerrit, H. Anders, and T.L. Ma, Influence of nitrogen dopants on N-doped TiO2 electrodes and their applications in dye-sensitized solar cells, Electrochim. Acta 56 (2011), pp. 4611–4617. doi: 10.1016/j.electacta.2011.02.091
  • H. Diker, C. Varlikli, K. Mizrak, and A. Dana, Characterizations and photocatalytic activity comparisons of N-doped nc-TiO2 depending on synthetic conditions and structural differences of amine sources, Energy 36 (2011), pp. 1243–1254. doi: 10.1016/j.energy.2010.11.020
  • F. Peng, L.F. Cai, H. Yu, H.J. Wang, and J. Yang, Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity, J. Solid State Chem. 181 (2008), pp. 130–136. doi: 10.1016/j.jssc.2007.11.012
  • J. Ananpattarachai, P. Kajitvichyanukul, and S. Seraphin, Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants, J. Hazard. Mater. 168 (2009), pp. 253–261. doi: 10.1016/j.jhazmat.2009.02.036
  • T. Han, T.X. Fan, S.K. Chow, and D. Zhang, Biogenic N–P-codoped TiO2: Synthesis, characterization and photocatalytic properties, Bioresour. Technol. 101 (2010), pp. 6829–6835. doi: 10.1016/j.biortech.2010.03.107
  • Y.B. Ryu, M.S. Lee, E.D. Jeong, H.G. Kim, W.Y. Jung, S.H. Baek, G.D. Lee, S.S. Park, and S.S. Hong, Hydrothermal synthesis of titanium dioxides from peroxotitanate solution using different amine group-containing organics and their photocatalytic activity, Catal. Today 124 (2007), pp. 88–93. doi: 10.1016/j.cattod.2007.03.027
  • J. Sun, L. Qiao, S. Sun, and G. Wang, Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation, J. Hazard. Mater. 155 (2008), pp. 312–319. doi: 10.1016/j.jhazmat.2007.11.062
  • J.W. Fan, J.Y. Liu, J. Hong, and J. Zhang, The synthesis of nanostructure TiO2 co-doped with N and Fe and their application for micro-polluted source water treatment, Environ. Technol. 30 (2009), pp. 1447–1452. doi: 10.1080/09593330903200751
  • N. Bao, J.S. Wang, C.R. Deng, and Y.J. Chen, Immobilized photocatalytic oxidation of furaltadone in aqueous solution, Chin. Environ. Sci. 18 (1998), pp. 458–462 (in Chinese).
  • Q. Chen, G.H. Du, S. Zhang, and L.M. Peng, The structure of trititanate nanotubes, Acta Crystallogr. B 58 (2002), pp. 587–593. doi: 10.1107/S0108768102009084
  • Z.Q. Song, H.Y. Xu, K.W. Li, H. Wang, and H. Yan, Hydrothermal synthesis and photocatalytic properties of titanium acid nanosheets, J. Mol. Catal. A: Chem. 239 (2005), pp. 87–91. doi: 10.1016/j.molcata.2005.06.005
  • C.C. Tsai and H. Teng, Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments, Chem. Mater. 18 (2006), pp. 367–373. doi: 10.1021/cm0518527
  • N. Bao, J. Sun, F. Zhang, and Z.H. Ma, N-doped TiO2: Preparation by hydrothermal reaction-thermolysis process and photocatalytic activity, Chin. J. Inorg. Chem. 23 (2007), pp. 101–108.
  • S. Sato, R. Nakamura, and S. Abe, Visible-light sensitization of TiO2 photocatalysts by wet-method N doping, Appl. Catal. A: Gen. 284 (2005), pp. 131–137. doi: 10.1016/j.apcata.2005.01.028
  • Y. Taahashi, A. Ohsugi, T. Arafuka, T. Ohya, T. Ban, and Y. Ohya, Development of new modi?ers for titanium alkoxide-based sol-gel process, J. Sol-Gel Sci. Technol. 17 (2000), pp. 227–238. doi: 10.1023/A:1008716122654
  • T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal. A: Gen. 265 (2004), pp. 115–121. doi: 10.1016/j.apcata.2004.01.007
  • P.D. Cozzoli, A. Kornowski, and H. Weller, Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods, J. Am. Chem. Soc. 125 (2003), pp. 14539–14548. doi: 10.1021/ja036505h
  • M. Sathish, B. Viswanathan, P.R. Viswanath, and C.S. Gopinath, Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst, Chem. Mater. 17 (2005), pp. 6349–6353. doi: 10.1021/cm052047v
  • R. Marchand, F. Tessier, A. Le Sauze, and N. Diot, Typical features of nitrogen in nitride-type compounds, Inter. J. Inorg. Mater. 3 (2001), pp. 1143–1146. doi: 10.1016/S1466-6049(01)00145-3
  • B. Oregan and M. Grätzel, Low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991), pp. 737–740. doi: 10.1038/353737a0
  • A.M. Peiró, J. Peral, C. Domingo, X. Domènech, and J.A. Ayllón, Low-temperature deposition of TiO2 thin films with photocatalytic activity from colloidal anatase aqueous solutions, Chem. Mater. 13 (2001), pp. 2567–2573. doi: 10.1021/cm0012419
  • O. Diwald, T.L. Thompson, E.G. Goralski, S.D. Walck, and J.T. Yates, The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals, J. Phys. Chem. B 108 (2004), pp. 52–57. doi: 10.1021/jp030529t
  • O. Diwald, T.L. Thompson, E.G. Goralski, S.D. Walck, and J.T. Yates, Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light, J. Phys. Chem. B 108 (2004), pp. 6004–6008. doi: 10.1021/jp031267y
  • S. Livraghi, A.M. Votta, M.C. Paganini, and E. Giamello, The nature of paramagnetic species in nitrogen doped TiO2 active in visible light photocatalysis, Chem. Commun. 4 (2005), pp. 498–500. doi: 10.1039/b413548b
  • J.X. Yu, J.Y. Wang, J. Zhang, Z.K. He, Z.H. Liu, and X.P. Ai, Characterization and photoactivity of TiO2 sols prepared with triethylamine, Mater. Lett. 61 (2007), pp. 4984–4988. doi: 10.1016/j.matlet.2007.03.087
  • C. Morterra, An infrared spectroscopic study of anatase properties. Part 6.—surface hydration and strong Lewis acidity of pure and sulphate-doped preparations, J. Chem. Soc., Faraday Trans. 84 (1988), pp. 1617–1637. doi: 10.1039/f19888401617
  • K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, and T. Siemieniewska, Reporting physisorption data for gas/solid systems, Pure Appl. Chem. 57 (1985), pp. 603–619. doi: 10.1351/pac198557040603
  • J.J. Xu, Y.H Ao, D.G. Fu, and C.W. Yuan, A simple route for the preparation of Eu, N-codoped TiO2 nanoparticles with enhanced visible light-induced photocatalytic activity, J. Colloid Interface Sci. 328 (2008), pp. 447–451. doi: 10.1016/j.jcis.2008.08.053
  • J.J. Xu, Y.H Ao, D.G. Fu, C.W. Yuan, and C.W. Yuan, A simple route to synthesize highly crystalline N-doped TiO2 particles under low temperature, J. Cryst. Growth 321 (2008), pp. 4319–4324. doi: 10.1016/j.jcrysgro.2008.07.045
  • J.J. Xua, Y.H. Ao, M.D. Chen, and D.G. Fu, Photoelectrochemical property and photocatalytic activity of N-doped TiO2 nanotube arrays, Appl. Surf. Sci. 256 (2010), pp. 4397–4401. doi: 10.1016/j.apsusc.2010.02.037
  • C. Wang, Y.H. Ao, P.F. Wang, J. Hou, and J. Qian, Preparation of cerium and nitrogen co-doped titania hollow spheres with enhanced visible light photocatalytic performance, Powder Technol. 210 (2011), pp. 203– 207.
  • C.D. Valentin, G. Pacchioni, and A. Selloni, Origin of the different photoactivity of N-doped anatase and rutile TiO2, Phys. Rev. B 70 (2004), pp. 085116/1–4. doi: 10.1103/PhysRevB.70.085116
  • Y. Zhang, X.M. Dou, J. Liu, M. Yang, L.P. Zhang, and Y. Kamagata, Decolorization of reactive brilliant red X-3B by heterogeneous photo-Fenton reaction using an Fe–Ce bimetal catalyst, Catal. Today 126 (2007), pp. 387–393. doi: 10.1016/j.cattod.2007.06.019
  • X.H. Qi, Z.H. Wang, Y.Y. Zhuang, Y. Yu, and J.L. Li, Study on the photocatalysis performance and degradation kinetics of X-3B over modified titanium dioxide, J. Hazard. Mater. B 118 (2005), pp. 219–225. doi: 10.1016/j.jhazmat.2004.11.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.