578
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of hydrogen production by Clostridium strains on beet molasses

, , &
Pages 278-285 | Received 09 Jan 2013, Accepted 10 Jul 2013, Published online: 05 Sep 2013

REFERENCES

  • Naik SN, Goud VV, Rout PK, Dalai AK. Production of first and second generation biofuels: a comprehensive review. Renew Sust Energy Rev. 2010;14:578–597. doi: 10.1016/j.rser.2009.10.003
  • Yu-Wu QM, Weiss-Hortala E, Barna R, Boucard H, Bulza S. Glycerol and bioglycerol conversion in supercritical water for hydrogen production. Environ Technol. 2012;33(19):2245–2255. doi: 10.1080/09593330.2012.728738
  • Nigam PS, Singh A. Production of liquid biofuels from renewable resources. Prog Energy Combust. 2011;37:52–68. doi: 10.1016/j.pecs.2010.01.003
  • Gu T, Held MA, Faik A. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production. Environ Technol. doi: 10.1080/09593330.2013.809777
  • Allen E, Browne JD, Murphy JD. Evaluation of the biomethane yield from anaerobic co-digestion of nitrogenous substrates. Environ Technol. doi: 10.1080/09593330.2013.806564
  • Elshahed M. Microbiological aspects of biofuel production: current status and future directions. J Adv Res. 2010;1: 103–111. doi: 10.1016/j.jare.2010.03.001
  • Kotay SM, Das D. Biohydrogen as a renewable energy resource-prospects and potentials. Int J Hydrog Energy. 2008;33:258–263. doi: 10.1016/j.ijhydene.2007.07.031
  • Saraphiroma P, Reungsang A. Enhancement of biohydrogen production from sweet sorghum syrup by anaerobic seed sludge in an anaerobic sequencing batch reactor by nutrient and vitamin supplementations. Environ Technol. doi: 10.1080/09593330.2013.774057
  • Lakshmidevi R, Muthukumar K. Enzymatic saccharification and fermentation of paper and pulp industry effluent for biohydrogen production. Int J Hydrog Energy. 2010;35: 3389–3400. doi: 10.1016/j.ijhydene.2009.12.165
  • Lin PY, Whang LM, Wu YR, Ren EJ, Hsiao CJ, Li SL, Chang JS. Biological hydrogen production of genus clostridium: metabolic study and mathematical model simulation. Int J Hydrog Energy. 2007;32:1728–1735. doi: 10.1016/j.ijhydene.2006.12.009
  • Lin CY, Chang RC. Hydrogen production during the anaerobic acidogenic conversion of glucose. J Chem Technol Biotechnol. 1999;74:498–500. doi: 10.1002/(SICI)1097-4660(199906)74:6<498::AID-JCTB67>3.0.CO;2-D
  • Chen CC, Lin CY. Using sucrose as a substrate in an anaerobic hydrogen producing reactor. Adv Environ Res. 2003;7:695–699. doi: 10.1016/S1093-0191(02)00035-7
  • Noike T, Takabatake H, Mizuno O, Ohba M. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int J Hydrog Energy. 2002;27:1367–1371. doi: 10.1016/S0360-3199(02)00120-9
  • Venetsaneas N, Antonopoulou G, Stamatelatou K, Kornaros M, Lyberatos G. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approach. Bioresour Technol. 2009;100(15):3713–3717. doi: 10.1016/j.biortech.2009.01.025
  • Zhao M-X, Yan Q, Ruan W-Q, Miao H-F, Ren H-Y, Xu Y. Enhancement of substrate solubilization and hydrogen production from kitchen wastes by pH pretreatment. Environ Technol. 2011;32(2):119–125. doi: 10.1080/09593330.2010.482596
  • Wang X, Jin B. Process optimization of hydrogen production from molasses by a newly isolated Clostridium butyricum W5. J Biosci Bioeng. 2009;107(2):138–144. doi: 10.1016/j.jbiosc.2008.10.012
  • Koçberber Kılıç N, Dönmez G. Phenol biodegradation by different mixed cultures and the optimization of efficiency of the degradation. Environ Technol. doi: 10.1080/09593330.2013.765919
  • Erdal G, Esengün K, Erdal H, Gündüz O. Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energy. 2007;32:35–41. doi: 10.1016/j.energy.2006.01.007
  • Jumadurdiyev A, Ozkul MH, Saglam AR, Parlak N. The utilization of beet molasses as a retarding and water-reducing admixture for concrete. Cement Concrete Res. 2005;35: 874–882. doi: 10.1016/j.cemconres.2004.04.036
  • Herbel Z, Rákhely G, Bagi Z, Ivanova G, Ács N, Kovács E, Kovács KL. Exploitation of the extremely thermophilic Caldicellulosiruptor saccharolyticus in hydrogen and biogas production from biomasses. Environ Technol. 2010; 31(8–9):1017–1024. doi: 10.1080/09593330.2010.484075
  • Verhaart MRA, Bielen AAM, van der Oost J, Stams AJM, Kengen SWM. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environ Technol. 2010; 31(8–9):993–1003. doi: 10.1080/09593331003710244
  • Fang HHP, Li RY, Zhang T. Effects of Mo(VI) on phototrophic hydrogen production by Rhodobacter sphaeroides. Environ Technol. 2011;32(11):1279–1285. doi: 10.1080/09593330.2010.535176
  • Chong ML, Rahman NAA, Yee PL, Aziz SA, Rahim RA, Shirai Y, Hassan MA. Effects of pH, glucose and iron sulfate concentration on the yield of biohydrogen by Clostridium butyricum EB6. Int J Hydrog Energy. 2009;34: 8859–8865. doi: 10.1016/j.ijhydene.2009.08.061
  • Krupp M, Widmann R. Biohydrogen production by dark fermentation: experiences of continuous operation in large lab scale. Int J Hydrog Energy. 2009;34: 4509–4516. doi: 10.1016/j.ijhydene.2008.10.043
  • Hallenbeck PC. Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrog Energy. 2009;34:7379–7389. doi: 10.1016/j.ijhydene.2008.12.080
  • Chong ML, Rahima RA, Shiraib Y, Hassan MA. Biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent. Int J Hydrog Energy. 2009;34:764–771. doi: 10.1016/j.ijhydene.2008.10.095
  • Cai G, Jin B, Saint C, Monis P. Metabolic flux analysis of hydrogen production network by Clostridium butyricum W5: effect of pH and glucose concentration. Int J Hydrog Energy. 2010;35:6681–6690. doi: 10.1016/j.ijhydene.2010.04.097
  • Jones DT, Woods DR. Acetone-butanol fermentation revisited. Microbiol Rev. 1986;50(4):484–524.
  • Zhao X, Xing D, Fu N, Liu B, Ren N. Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108. Bioresour Technol. 2011;102:8432–8436. doi: 10.1016/j.biortech.2011.02.086
  • Cappeletti BM, Reginatto V, Amante ER. Fermentative production of hydrogen from cassava processing wastewater by Clostridium acetobutylicum. Renew Energy. 2011;36: 3367–3372. doi: 10.1016/j.renene.2011.05.015
  • Oh SE, Zuo YE, Zhang HS, Guiltinan MJ, Logan BE, Regan JM. Hydrogen production by Clostridium acetobutylicum ATCC 824 and megaplasmid-deficient mutant M5 evaluated using a large headspace volume technique. Int J Hydrog Energy. 2009;34(23):9347–9353. doi: 10.1016/j.ijhydene.2009.09.084
  • Eversloh TL, Bahl H. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol. 2011;22:634–647. doi: 10.1016/j.copbio.2011.01.011
  • Klein M, Schumacher MBA, Fritsch M, Hartmeier W. Influence of hydrogenase overexpression on hydrogen production of Clostridium acetobutylicum DSM 792. Enzyme Microbial Technol. 2010;46:384–390. doi: 10.1016/j.enzmictec.2009.12.015
  • Johnson JL, Toth J, Santiwatanakul S, Chen JS. Cultures of Clostridium acetobutylicum from various collections comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other distinct types based on DNA–DNA reassociation. Int J Syst Bacteriol. 1997;47(2): 420–424. doi: 10.1099/00207713-47-2-420
  • Keis S, Shaheen R, Jones DT. Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int J Syst Bacteriol. 2001;51:2095–2103.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–2739. doi: 10.1093/molbev/msr121
  • Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10:512–526.
  • Yang H, Shen J. Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch. Int J Hydrog Energy. 2006;31:2137–2146. doi: 10.1016/j.ijhydene.2006.02.009
  • Forouchi E, Gunn DJ. Some effects of metal ions on the estimation of reducing sugars in biological media. Biotechnol Bioeng. 1983;25:1905–1911. doi: 10.1002/bit.260250717
  • Seppala JJ, Puhakka JA, Harja OY, Karp MT, Santala V. Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in pure and cocultures. Int J Hydrog Energy. 2011;36:10701–10708. doi: 10.1016/j.ijhydene.2011.05.189
  • Pattra S, Sangyoka S, Boonmee M, Reungsang A. Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int J Hydrog Energy. 2008;33:5256–5265. doi: 10.1016/j.ijhydene.2008.05.008
  • Alalayah WM, Kalil MS, Kadhum AAH, Jahim JM, Alauj NM. Hydrogen production using Clostridium saccharoperbutylacetonicum N1–4 (ATCC 13564). Int J Hydrog Energy. 2008;33:7392–7396. doi: 10.1016/j.ijhydene.2008.09.066
  • Antonopoulou G, Gaval HN, Skiadas IV, Lyberatos G. Effect of substrate concentration on fermentative hydrogen production from sweet sorghum extract. Int J Hydrog Energy. 2011;36:4843–4851. doi: 10.1016/j.ijhydene.2011.01.077
  • Kim SH, Han SK, Shin HK. Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochem. 2006;41:199–207. doi: 10.1016/j.procbio.2005.06.013
  • Niu K, Zhang X, Tan WS, Zhu LM. Characteristics of fermentative hydrogen production with Klebsiella pneumoniae ECU-15 isolated from anaerobic sewage sludge. Int J Hydrog Energy. 2010;35:71–80. doi: 10.1016/j.ijhydene.2009.10.071
  • Guo XM, Trably E, Latrille E, Carrere H, Steyer JP. Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrog Energy. 2010;35:10660–10673. doi: 10.1016/j.ijhydene.2010.03.008
  • Tanisho S, Ishiwata Y. Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes. Int J Hydrog Energy. 1994;19:807–812. doi: 10.1016/0360-3199(94)90197-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.