1,480
Views
79
CrossRef citations to date
0
Altmetric
Part I: Challenges and Developments

Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels

, &
Pages 1807-1836 | Received 09 May 2013, Accepted 25 Jul 2013, Published online: 08 Oct 2013

References

  • Chisti , Y . 2007 . Biodiesel from microalgae . Biotechnol Adv. , 25 : 294 – 306 .
  • Ferrell , J and Sarisky-Reed , V . National algal biofuels technology roadmap US Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass program; 2010 May. (Report No. DOE/EE-0332, 2010); College Park, Maryland.
  • Riesing , T F . Cultivating algae for liquid fuel production [Internet] 2013 [cited 2013 Jul 14]. Available from: http://www.geni.org/globalenergy/library/technical-articles/generation/future-fuels/permacultureactivist/cultivating-algae-for-liquid-fuel-production/index.shtml.
  • Chisti , Y . 2008 . Biodiesel from microalgae beats bioethanol . Trends Biotechnol. , 26 : 126 – 131 .
  • Murphy , D J , Hall , C A and Powers , B . 2011 . New perspectives on the energy return on (energy) investment (EROI) of corn ethanol . Environ, Develop Austainability. , 13 : 179 – 202 .
  • Muok , B O . 2010 . Environmental suitability and agro- environmental zoning of Kenya for biofuel production , ACTS; .
  • Bailis , R , Ezzati , M and Kammen , D M . 2005 . Mortality and greenhouse gas impacts of biomass and petroleum energy futures in Africa . Science. , 308 : 98 – 103 .
  • Ditomaso , J M , Reaser , J K , Dionigi , C P , Doering , O C , Chilton , E , Schardt , J D and Barney , J N . 2010 . Biofuel vs bioinvasion: seeding policy priorities . Environ Sci Technol. , 44 : 6906 – 6910 .
  • Schmer , M R , Vogel , K P , Mitchell , R B and Perrin , R K . 2008 . Net energy of cellulosic ethanol from switchgrass . Proc Natl Acad Sci USA. , 105 : 464 – 469 .
  • Lavoie , J-M , Marie-Rose , S and Lynch , D . 2013 . Non-homogeneous residual feedstocks to biofuels and chemicals via the methanol route . Biomass Convers Biorefinery. , 3 : 39 – 44 .
  • Sims , R E , Mabee , W , Saddler , J N and Taylor , M . 2010 . An overview of second generation biofuel technologies . Bioresour Technol. , 101 : 1570 – 1580 .
  • Achten , W M , Almeida , J , Fobelets , V , Bolle , E , Mathijs , E , Singh , V P , Tewari , D N , Verchot , L V and Muys , B . 2010 . Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India . Appl Energy. , 87 : 3652 – 3660 .
  • Singh , J and Gu , S . 2010 . Commercialization potential of microalgae for biofuels production . Renew Sustain Energy Rev. , 14 : 2596 – 2610 .
  • Beal , C M , Hebner , R E , Webber , M E , Ruoff , R S and Seibert , A F . 2012 . The energy return on investment for algal biocrude: results for a research production facility . Bioenergy Res. , 5 : 341 – 362 .
  • Liang , Y , Sarkany , N and Cui , Y . 2009 . Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions . Biotechnol Lett. , 31 : 1043 – 1049 .
  • Brennan , L and Owende , P . 2010 . Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products . Renew Sustain Energy Rev. , 14 : 557 – 577 .
  • Pienkos , P T . 2007 . The potential for biofuels from algae , CA; : Algae Biomass Summit San Francisco .
  • Goldenberg , S . Algae to solve the Pentagon's jet fuel problem 2010 [Internet]; [cited 2013 Jul 14]. Available from: http://www.guardian.co.uk/environment/2010/feb/13/algae-solve-pentagon-fuel-problem
  • S.G. Inc . SGI announces new algae basic research agreement with ExxonMobil 2013 [Internet] [cited 2013 Jul 14]. Available from: http://www.syntheticgenomics.com/media/press/051613.html.
  • Thurmond , W . “ Top 11 algae biofuel and biochemical trends from 2011–2020 ” . In Algae 2020, Vol 2 (2011 update) Emerging Markets Online 2011 [Internet]; [cited 2013 Jul 14]. Available from: http://arizonaenergy.org/News_11/News_Mar11/Top11AlgaeBiofuelandBiochemicalTrendsFrom20112020.html.
  • News EERE . New investments to accelerate next generation biofuels 2013 [Internet]; [cited 2013 Jul 14]. Available from: http://apps1.eere.energy.gov/news/daily.cfm/hp_news_id=387.
  • Japanese sewage plant extracting algal oil for fuel . In Algae Industry Magazine 2013 [Internet]; [cited 2013 Jul 14]. Available from: http://www.algaeindustrymagazine.com/japanese-sewage-plant-extracting-algal-oil-for-fuel/.
  • Leite , G B , Abdelaziz , AE M and Hallenbeck , P C . 2013 . Algal biofuels; challenges and opportunities . Bioresour Technol. , 145 : 134 – 141 .
  • Christenson , L and Sims , R . 2011 . Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts . Biotechnol Adv. , 29 : 686 – 702 .
  • Georgianna , D R and Mayfield , S P . 2012 . Exploiting diversity and synthetic biology for the production of algal biofuels . Nature. , 488 : 329 – 335 .
  • Greenwell , H , Laurens , L , Shields , R , Lovitt , R and Flynn , K . 2010 . Placing microalgae on the biofuels priority list: a review of the technological challenges . J R Soc Interf. , 7 : 703 – 726 .
  • Jones , C S and Mayfield , S P . 2012 . Algae biofuels: versatility for the future of bioenergy . Curr Opin Biotechnol. , 23 : 346 – 351 .
  • McGinn , P J , Dickinson , K E , Bhatti , S , Frigon , J C , Guiot , S R and O'Leary , S J. 2011 . Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations . Photosynth Res. , 109 : 231 – 247 .
  • Scott , S A , Davey , M P , Dennis , J S , Horst , I , Howe , C J , Lea-Smith , D J and Smith , A G . 2010 . Biodiesel from algae: challenges and prospects . Curr Opin Biotechnol. , 21 : 277 – 286 .
  • Stephenson , P G , Moore , C M , Terry , M J , Zubkov , M V and Bibby , T S . 2011 . Improving photosynthesis for algal biofuels: toward a green revolution . Trends Biotechnol. , 29 : 615 – 623 .
  • Gordon , J M and Polle , J E . 2007 . Ultrahigh bioproductivity from algae . Appl Microbiol Biotechnol. , 76 : 969 – 975 .
  • Hu , Q , Sommerfeld , M , Jarvis , E , Ghirardi , M , Posewitz , M , Seibert , M and Darzins , A . 2008 . Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances . Plant J. , 54 : 621 – 639 .
  • Williams , PJlB and Laurens , L M . 2010 . Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics . Energy Environ Sci. , 3 : 554 – 590 .
  • Bp. BP statistical review of world energy June 2012 2012 [Internet]; [cited 2013 Jul 16]. Available from: http://www.bp.com/content/dam/bp/pdf/Statistical-Review-2012/statistical_review_of_world_energy_2012.pdf .
  • NRC . 2012 . Sustainable development of algal biofuels in the United States , Washington, DC : The National Academies Press; . Available from: http://www.nap.edu/catalog.php?record_id=13437
  • Campbell , P K , Beer , T and Batten , D . 2011 . Life cycle assessment of biodiesel production from microalgae in ponds . Bioresour Technol. , 102 : 50 – 56 .
  • Zamalloa , C , Vulsteke , E , Albrecht , J and Verstraete , W . 2011 . The techno-economic potential of renewable energy through the anaerobic digestion of microalgae . Bioresour Technol. , 102 : 1149 – 1158 .
  • Gudin , C and Thepenier , C . 1986 . Bioconversion of solar energy into organic chemicals by microalgae . Adv Biotechnol Processes. , 6 : 73 – 110 .
  • Molina Grima , E , Belarbi , E-H , Acién Fernández , F , Robles Medina , A and Chisti , Y . 2003 . Recovery of microalgal biomass and metabolites: process options and economics . Biotechnol Adv. , 20 : 491 – 515 .
  • Uduman , N , Qi , Y , Danquah , M K , Forde , G M and Hoadley , A . 2010 . Dewatering of microalgal cultures: a major bottleneck to algae-based fuels . J Renew Sustain Energy. , 2 : 012701
  • Danquah , M K , Ang , L , Uduman , N , Moheimani , N and Forde , G M . 2009 . Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration . J Chem Technol Biotechnol. , 84 : 1078 – 1083 .
  • Gouveia , L . 2011 . Microalgae as a feedstock for biofuels , Berlin, Heidelberg : Springer; .
  • Edzwald , J . 1993 . Algae, bubbles, coagulants, and dissolved air flotation . Water Science & Technology. , 27 : 67 – 81 .
  • Milledge John , J and Heaven , S . 2013 . A review of the harvesting of micro-algae for biofuel production . Rev Environ Sci Bio/Technol. , 12 : 165 – 178 .
  • Millero , F J and Lepple , F K . 1973 . The density and expansibility of artificial seawater solutions from 0 to 40°C and 0 to 21‰ chlorinity . Marine Chem. , 1 : 89 – 104 .
  • Ras , M , Lardon , L , Bruno , S , Bernet , N and Steyer , J-P . 2011 . Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris . Bioresour Technol. , 102 : 200 – 206 .
  • Cole , T M and Wells , S A . CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, Version 3.2; User Manual. U. S. Army Engineer Waterways Experiment Station, Vicksburg, MS; 1995. Available from: http://cemexico.groups.et.byu.net/2008/AguamilpaEmbalse/manualv32.pdf
  • Smith , B T and Davis , R H . 2013 . Particle concentration using inclined sedimentation via sludge accumulation and removal for algae harvesting . Chem Eng Sci. , 91 : 79 – 85 .
  • Heasman , M , Diemar , J , O'connor , W , Sushames , T and Foulkes , L . 2000 . Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs – a summary . Aquac Res. , 31 : 637 – 659 .
  • Knuckey , R M , Brown , M R , Robert , R and Frampton , D M . 2006 . Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds . Aquac Eng. , 35 : 300 – 313 .
  • Benemann , J R and Oswald , W J . 1996 . Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass , Pittsburgh, PA : Prepared for the Energy Technology Center; . (Final Report. US DOE-NETL No: DOE/PC/93204-T5).
  • Schenk , P M , Thomas-Hall , S R , Stephens , E , Marx , U C , Mussgnug , J H , Posten , C , Kruse , O and Hankamer , B . 2008 . Second generation biofuels: high-efficiency microalgae for biodiesel production . Bioenergy Res. , 1 : 20 – 43 .
  • Dassey , A J and Theegala , C S . 2013 . Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications . Bioresour Technol. , 128 : 241 – 245 .
  • Pushparaj , B , Pelosi , E , Torzillo , G and Materassi , R . 1993 . Microbial biomass recovery using a synthetic cationic polymer . Bioresour Technol. , 43 : 59 – 62 .
  • Lee , S , Kim , S , Kim , J , Kwon , G , Yoon , B and Oh , H . 1998 . Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii . Lett Appl Microbiol. , 27 : 14 – 18 .
  • Wyatt , N B , Gloe , L M , Brady , P V , Hewson , J C , Grillet , A M , Hankins , M G and Pohl , P I . 2012 . Critical conditions for ferric chloride-induced flocculation of freshwater algae . Biotechnol Bioeng. , 109 : 493 – 501 .
  • Papazi , A , Makridis , P and Divanach , P . 2010 . Harvesting Chlorella minutissima using cell coagulants . J Appl Phycol. , 22 : 349 – 355 .
  • Divakaran , R and Pillai , V S . 2002 . Flocculation of algae using chitosan . J Appl Phycol. , 14 : 419 – 422 .
  • Bilanovic , D , Shelef , G and Sukenik , A . 1988 . Flocculation of microalgae with cationic polymers – effects of medium salinity . Biomass. , 17 : 65 – 76 .
  • Tenney , M W , Echelberger , W F , Schuessler , R G and Pavoni , J L . 1969 . Algal flocculation with synthetic organic polyelectrolytes . Appl Microbiol. , 18 : 965 – 971 .
  • Riaño , B , Molinuevo , B and García-González , M . 2012 . Optimization of chitosan flocculation for microalgal-bacterial biomass harvesting via response surface methodology . Ecol Eng. , 38 : 110 – 113 .
  • Morales , J , De La Noüe , J and Picard , G . 1985 . Harvesting marine microalgae species by chitosan flocculation . Aquac Eng. , 4 : 257 – 270 .
  • Ahmad , A , Mat Yasin , N , Derek , C and Lim , J . 2011 . Optimization of microalgae coagulation process using chitosan . Chem Eng J. , 173 : 879 – 882 .
  • Farid , M S , Shariati , A , Badakhshan , A and Anvaripour , B . 2013 . Using nano-chitosan for harvesting microalga nannochloropsis sp . Bioresour Technol. , 131 : 555 – 559 .
  • Banerjee , C , Ghosh , S , Sen , G , Mishra , S , Shukla , P and Bandopadhyay , R . 2013 . Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant . Carbohydr Polym. , 92 : 675 – 681 .
  • Lee , Y-C , Kim , B , Farooq , W , Chung , J , Han , J-I , Shin , H-J , Jeong , S H , Park , J-Y , Lee , J-S and Oh , Y-K . 2013 . Harvesting of oleaginous Chlorella sp . by organoclays. Bioresour Technol. , 132 : 440 – 445 .
  • Farooq , W , Lee , Y-C , Han , J-I , Darpito , C H , Choi , M and Yang , J-W . 2013 . Efficient microalgae harvesting by organo-building blocks of nanoclays . Green Chem. , 15 : 749 – 755 .
  • Zheng , H , Gao , Z , Yin , J , Tang , X , Ji , X and Huang , H . 2012 . Harvesting of microalgae by flocculation with poly (γ-glutamic acid) . Bioresour Technol. , 112 : 212 – 220 .
  • Teixeira , CML L , Kirsten , F V and Teixeira , PC N . 2012 . Evaluation of Moringa oleifera seed flour as a flocculating agent for potential biodiesel producer microalgae . J Appl Phycol. , 24 : 557 – 563 .
  • Cheng , Y-L , Juang , Y-C , Liao , G-Y , Tsai , P-W , Ho , S-H , Yeh , K-L , Chen , C-Y , Chang , J-S , Liu , J-C and Chen , W-M . 2011 . Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation . Bioresour Technol. , 102 : 82 – 87 .
  • Sukenik , A , Bilanovic , D and Shelef , G . 1988 . Flocculation of microalgae in brackish and sea waters . Biomass. , 15 : 187 – 199 .
  • Vandamme , D , Foubert , I , Meesschaert , B and Muylaert , K . 2010 . Flocculation of microalgae using cationic starch . J Appl Phycol. , 22 : 525 – 530 .
  • Lu Chen , C W , Weiguo , Wanga and Jiang , Wei . 2013 . Optimal conditions of different flocculation methods for harvesting Scenedesmus sp . cultivated in an open-pond system. Bioresour Technol. , 133 : 9 – 15 .
  • Sukenik , A and Shelef , G . 1984 . Algal autoflocculation – verification and proposed mechanism . Biotechnol Bioeng. , 26 : 142 – 147 .
  • Lee , J , Cho , D-H , Ramanan , R , Kim , B-H , Oh , H-M and Kim , H-S . 2013 . Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris . Bioresour Technol. , 131 : 195 – 201 .
  • Castrillo , M , Lucas-Salas , L , Rodríguez-Gil , C and Martínez , D . 2013 . High pH-induced flocculation-sedimentation and effect of supernatant reuse on growth rate and lipid productivity of Scenedesmus obliquus and Chlorella vulgaris . Bioresour Technol. , 128 : 324 – 329 .
  • Lee , A K , Lewis , D M and Ashman , P J . 2009 . Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel . J Appl Phycol. , 21 : 559 – 567 .
  • Mohn , F H . 1980 . “ Experiences and strategies in the recovery of biomass from mass cultures of microalgae ” . In Algae biomass , Edited by: Shelef , G and Soeder , C J . 547 – 571 . Amsterdam : Elsevier; .
  • Bilad , M R , Vandamme , D , Foubert , I , Muylaert , K and Vankelecom , I F . 2012 . Harvesting microalgal biomass using submerged microfiltration membranes . Bioresour Technol. , 111 : 343 – 352 .
  • Zhang , X , Hu , Q , Sommerfeld , M , Puruhito , E and Chen , Y . 2010 . Harvesting algal biomass for biofuels using ultrafiltration membranes . Bioresour Technol. , 101 : 5297 – 5304 .
  • Petrusevski , B , Bolier , G , Van Breemen , A and Alaerts , G . 1995 . Tangential flow filtration: a method to concentrate freshwater algae . Water Res. , 29 : 1419 – 1424 .
  • Borowitzka , M A . 1997 . Microalgae for aquaculture: opportunities and constraints . J Appl Phycol. , 9 : 393 – 401 .
  • Rossignol , N , Vandanjon , L , Jaouen , P and Quemeneur , F . 1999 . Membrane technology for the continuous separation microalgae/culture medium: compared performances of cross-flow microfiltration and ultrafiltration . Aquac En. , 20 : 191 – 208 .
  • Hwang , T , Park , S-J , Oh , Y-K , Rashid , N and Han , J-I . 2013 . Harvesting of Chlorella sp. KR-1 using a cross-flow membrane filtration system equipped with an anti-fouling membrane . Bioresour Technol. , 139 : 379 – 382 .
  • Wilde , E W , Benemann , J R , Weissman , J C and Tillett , D M . 1991 . Cultivation of algae and nutrient removal in a waste heat utilization process . J Appl Phycol. , 3 : 159 – 167 .
  • Bejor , E , Mota , C , Ogarekpe , N , Emerson , K and Ukpata , J . 2013 . Low-cost harvesting of microalgae biomass from water . Int J Dev Sustain. , 2 ( 1 ) (In Press).
  • Esen , I , Puskas , K , Banat , I and Al-Daher , R . 1991 . Algae removal by sand filtration and reuse of filter material . Waste Manage. , 11 : 59 – 65 .
  • Brink , J and Marx , S . 2012 . Harvesting of Hartbeespoort Dam micro-algal biomass through sand filtration and solar drying . Fuel. , 106 : 67 – 71 .
  • Lin , C-C and Hong , P . 2013 (In press) . A new processing scheme from algae suspension to collected lipid using sand filtration and ozonation . Algal Res. , Available from: http://dx.doi.org/10.1016/j.algal.2013.06.001
  • Koopman , B and Lincoln , E . 1983 . Autoflotation harvesting of algae from high-rate pond effluents . Agric Wastes. , 5 : 231 – 246 .
  • Chen , Y , Liu , J and Ju , Y-H . 1998 . Flotation removal of algae from water . Colloid Surf B: Biointerf. , 12 : 49 – 55 .
  • Yoon , R and Luttrell , G . 1989 . The effect of bubble size on fine particle flotation . Min Proc Extractive Metall Rev. , 5 : 101 – 122 .
  • Crossley , I , Valade , M and Shawcross , J . 2001 . Using lessons learned and advanced methods to design a 1,500 Ml/day DAF water treatment plant . Water Sci Technol. , 43 : 35 – 41 .
  • Rubio , J , Souza , M and Smith , R . 2002 . Overview of flotation as a wastewater treatment technique . Miner Eng. , 15 : 139 – 155 .
  • Coward , T , Lee , J G and Caldwell , G S . 2013 . Development of a foam flotation system for harvesting microalgae biomass . Algal Res. , 2 : 135 – 144 .
  • Mollah , M Y , Morkovsky , P , Gomes , J A , Kesmez , M , Parga , J and Cocke , D L . 2004 . Fundamentals, present and future perspectives of electrocoagulation . J Hazard Mater. , 114 : 199 – 210 .
  • Uduman , N , Bourniquel , V , Danquah , M K and Hoadley , A F . 2011 . A parametric study of electrocoagulation as a recovery process of marine microalgae for biodiesel production . Chem Eng J. , 174 : 249 – 257 .
  • Azarian , G , Mesdaghinia , A , Vaezi , F , Nabizadeh , R and Nematollahi , D . 2007 . Algae removal by electro-coagulation process, application for treatment of the effluent from an industrial wastewater treatment plant . Iran J Public Health. , 36 : 57 – 64 .
  • Matos , C , Santos , M , Nobre , B and Gouveia , L . 2013 . Nannochloropsis sp . biomass recovery by electro-coagulation for biodiesel and pigment production. Bioresour Technol. , 134 : 219 – 226 .
  • Poelman , E , De Pauw , N and Jeurissen , B . 1997 . Potential of electrolytic flocculation for recovery of micro-algae . Resour, Conserv Recy. , 19 : 1 – 10 .
  • Lee , A K , Lewis , D M and Ashman , P J . 2013 . Harvesting of marine microalgae by electroflocculation: the energetics, plant design, and economics . Appl Energy. , 108 : 45 – 53 .
  • Garzon-Sanabria , A J , Davis , R and Nikolov , Z L . 2012 . Harvesting Nannochloris oculata by inorganic electrolyte flocculation: effect of initial cell density, ionic strength, coagulant dosage, and media pH . Bioresour Technol. , 118 : 418 – 424 .
  • Gao , S , Yang , J , Tian , J , Ma , F , Tu , G and Du , M . 2010 . Electro-coagulation–flotation process for algae removal . J Hazard Mater. , 177 : 336 – 343 .
  • Vandamme , D , Pontes , SC V , Goiris , K , Foubert , I , Pinoy , LJ J and Muylaert , K . 2011 . Evaluation of electro-coagulation–flocculation for harvesting marine and freshwater microalgae . Biotechnol Bioeng. , 108 : 2320 – 2329 .
  • OriginOil . High speed algal harvesting 2009 [Internet]; [cited 2013 Jul 16]. Available from: http://www.originoil.com/technology/overview.html.
  • Haukanes , B-I and Kvam , C . 1993 . Application of magnetic beads in bioassays . Nat Biotechnol. , 11 : 60 – 63 .
  • Liu , D , Li , F and Zhang , B . 2009 . Removal of algal blooms in freshwater using magnetic polymer . Water Sci Technol. , 59 : 1085 – 1091 .
  • Xu , L , Guo , C , Wang , F , Zheng , S and Liu , C-Z . 2011 . A simple and rapid harvesting method for microalgae by in situ magnetic separation . Bioresour Technol. , 102 : 10047 – 10051 .
  • Prochazkova , G , Safarik , I and Branyik , T . 2013 . Harvesting microalgae with microwave synthesized magnetic microparticles . Bioresour Technol. , 130 : 472 – 477 .
  • Shipin , O , Rose , P and Meiring , P . 1999 . Microbial processes underlying the PETRO concept (trickling filter variant) . Water Res. , 33 : 1645 – 1651 .
  • Oh , H-M , Lee , S J , Park , M-H , Kim , H-S , Kim , H-C , Yoon , J-H , Kwon , G-S and Yoon , B-D . 2001 . Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49 . Biotechnol Lett. , 23 : 1229 – 1234 .
  • Salim , S , Bosma , R and Vermuë , M H . 2011 . Wijffels RH: harvesting of microalgae by bio-flocculation . J Appl Phycol. , 23 : 849 – 855 .
  • Xie , S , Sun , S , Dai , S Y and Yuan , J S . 2013 . Efficient coagulation of microalgae in cultures with filamentous fungi . Algal Res. , 2 : 28 – 33 .
  • Zhou , W , Min , M , Hu , B , Ma , X , Liu , Y , Wang , Q , Shi , J , Chen , P and Ruan , R . 2013 . Filamentous fungi assisted bio-flocculation: a novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells . Separation Purif Technol. , 107 : 158 – 165 .
  • Carlberg , J M , Van Olst , J C , Massingill , M J and Chamberlain , R J . Aquaculture wastewater treatment system and method of making same U.S. Patent No. 6,447,681, issued September 10.
  • Brune , D E , Collier , J A , Schwedler , T E and Eversole , A . Controlled eutrophication system and process. , U.S. Patent No. 7,258,790, issued August 21, 2007.
  • Govender , P , Domingo , J L , Bester , M C , Pretorius , I S and Bauer , F F . 2008 . Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae . Appl Environ Microbiol. , 74 : 6041 – 36052 .
  • Scholz , M , Hoshino , T , Johnson , D , Riley , M R and Cuello , J . 2011 . Flocculation of wall-deficient cells of Chlamydomonas reinhardtii mutant cw15 by calcium and methanol . Biomass Bioenergy. , 35 : 4835 – 4840 .
  • Grima , E M , Fernández , F A and Medina , A R . 2013 . “ Downstream processing of cell mass and products ” . In Handbook of microalgal culture: applied phycology and biotechnology , Edited by: Richmond , A and Hu , Q . 267 – 309 . Chichester : Wiley-Blackwell; .
  • Cooney , M J , Young , G and Pate , R . 2011 . Bio-oil from photosynthetic microalgae: case study . Bioresour Technol. , 102 : 166 – 177 .
  • Chen , C-Y , Yeh , K-L , Aisyah , R , Lee , D-J and Chang , J-S . 2011 . Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review . Bioresour Technol. , 102 : 71 – 81 .
  • Li , Y and Wan , C . 2011 . Algae for biofuels Ohio State University/ Ohio Agricultural Research and Development Center (AEX-651–11) Available from: http://ohioline.osu.edu/aex-fact/pdf/AEX_651_11.pdf
  • Bux , F . 2013 . Biotechnological applications of microalgae: biodiesel and value added products , Boca Raton, FL : CRC Press Llc; .
  • Lam , M K and Lee , K T . 2012 . Microalgae biofuels: a critical review of issues, problems and the way forward . Biotechnol Adv. , 30 : 673 – 690 .
  • Vandamme , D , Foubert , I and Muylaert , K . 2013 . Flocculation as a low-cost method for harvesting microalgae for bulk biomass production . Trends Biotechnol. , 31 : 233 – 239 .
  • Xu , L , Wang , F , Li , H Z , Hu , Z M , Guo , C and Liu , C Z . 2010 . Development of an efficient electroflocculation technology integrated with dispersed-air flotation for harvesting microalgae . J Chem Technol Biotechnol. , 85 : 1504 – 1507 .
  • Goldman , J . 1980 . “ Physiological aspects in algal mass cultures ” . In Algae biomass: production and use , Edited by: Shelef , G and Soeder , C J . 343 – 360 . Amsterdam : Elsevier/NorthHolland Biomedical Press; .
  • Ahmad , A , Mat Yasin , N , Derek , C and Lim , J . 2012 . Crossflow microfiltration of microalgae biomass for biofuel production . Desalination. , 302 : 65 – 70 .
  • Middlebrooks , E J , Porcella , D B , Gearheart , R A , Marshall , G R , Reynolds , J H and Grenney , W J. 1974 . Techniques for algae removal from wastewater stabilization ponds . J Water Pollut Contr Fed. , 46 : 2676 – 2695 .
  • Rich , L G . 2003 . Aerated lagoon technology Available from: http://www.lagoonsonline.com/technote3.htm
  • Wu , Z , Zhu , Y , Huang , W , Zhang , C , Li , T , Zhang , Y and Li , A . 2012 . Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium . Bioresour Technol. , 110 : 496 – 502 .
  • Betzer , N , Argaman , Y and Kott , Y . 1980 . Effluent treatment and algae recovery by ozone-induced flotation . Water Res. , 14 : 1003 – 1009 .
  • Sim , T-S , Goh , A and Becker , E . 1988 . Comparison of centrifugation, dissolved air flotation and drum filtration techniques for harvesting sewage-grown algae . Biomass. , 16 : 51 – 62 .
  • Wiley , P E , Brenneman , K J and Jacobson , A E . 2009 . Improved algal harvesting using suspended air flotation . Water Environ Res. , 81 : 702 – 708 .
  • Pulz , O and Gross , W . 2004 . Valuable products from biotechnology of microalgae . Appl Microbiol Biotechnol. , 65 : 635 – 648 .
  • Pienkos , P T and Darzins , A . 2009 . The promise and challenges of microalgal-derived biofuels . Biofuels, Bioprod Biorefining. , 3 : 431 – 440 .
  • Miao , X and Wu , Q . 2004 . High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides . J Biotechnol. , 110 : 85 – 93 .
  • Miao , X , Wu , Q and Yang , C . 2004 . Fast pyrolysis of microalgae to produce renewable fuels . J Anal Appl Pyrolysis. , 71 : 855 – 863 .
  • Demirbaş , A . 2006 . Oily products from mosses and algae via pyrolysis . Energy Sourc, Part A: Recov, Ut, Environ Effects. , 28 : 933 – 940 .
  • Hu , Z , Zheng , Y , Yan , F , Xiao , B and Liu , S . 2013 . Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): product distribution and bio-oil characterization . Energy. , 52 : 119 – 125 .
  • Thangalazhy-Gopakumar , S , Adhikari , S , Chattanathan , S A and Gupta , R B . 2012 . Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM -5 catalyst . Bioresour Technol. , 118 : 150 – 157 .
  • Hu , Z , Ma , X and Li , L . 2013 . The characteristic and evaluation method of fast pyrolysis of microalgae to produce syngas . Bioresour Technol. , 140 : 220 – 226 .
  • Harman-Ware , A E , Morgan , T , Wilson , M , Crocker , M , Zhang , J , Liu , K , Stork , J and Debolt , S . 2013 . Microalgae as a renewable fuel source: fast pyrolysis of Scenedesmus sp . Renew Energy. , 60 : 625 – 632 .
  • Babich , I , Van der Hulst , M , Lefferts , L , Moulijn , J , O'Connor , P and Seshan , K . 2011 . Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels . Biomass Bioenergy. , 35 : 3199 – 3207 .
  • Duan , P , Bai , X , Xu , Y , Zhang , A , Wang , F , Zhang , L and Miao , J . 2013 . Non-catalytic hydropyrolysis of microalgae to produce liquid biofuels . Bioresour Technol. , 136 : 626 – 634 .
  • Jena , U and Das , K . 2011 . Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae . Energy Fuels. , 25 : 5472 – 5482 .
  • Jena , U , Das , K and Kastner , J . 2011 . Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis . Bioresour Technol. , 102 : 6221 – 6229 .
  • Hu , Z , Ma , X and Chen , C . 2012 . A study on experimental characteristic of microwave-assisted pyrolysis of microalgae . Bioresour Technol. , 107 : 487 – 493 .
  • Du , Z , Li , Y , Wang , X , Wan , Y , Chen , Q , Wang , C , Lin , X , Liu , Y , Chen , P and Ruan , R . 2011 . Microwave-assisted pyrolysis of microalgae for biofuel production . Bioresour Technol. , 102 : 4890 – 4896 .
  • Vardon , D R , Sharma , B K , Blazina , G V , Rajagopalan , K and Strathmann , T J . 2012 . Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis . Bioresour Technol. , 109 : 178 – 187 .
  • Biller , P , Ross , A B , Skill , S , Lea-Langton , A , Balasundaram , B , Hall , C , Riley , R and Llewellyn , C . 2012 . Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process . Algal Res. , 1 : 70 – 76 .
  • Biller , P and Ross , A . 2011 . Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content . Bioresour Technol. , 102 : 215 – 225 .
  • Dote , Y , Sawayama , S , Inoue , S , Minowa , T and Yokoyama , S-y . 1994 . Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction . Fuel. , 73 : 1855 – 1857 .
  • Minowa , T , Yokoyama , S-y , Kishimoto , M and Okakura , T . 1995 . Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction . Fuel. , 74 : 1735 – 1738 .
  • Hirano , A , Hon-Nami , K , Kunito , S , Hada , M and Ogushi , Y . 1998 . Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance . Catal Today. , 45 : 399 – 404 .
  • Sanchez-Silva , L , López-González , D , Garcia-Minguillan , A and Valverde , J . 2013 . Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae . Bioresour Technol. , 130 : 321 – 331 .
  • Demirbas , A . 2009 . Progress and recent trends in biodiesel fuels . Energy Convers Manage. , 50 : 14 – 34 .
  • Al-Widyan , M I and Al-Shyoukh , A O . 2002 . Experimental evaluation of the transesterification of waste palm oil into biodiesel . Bioresour Technol. , 85 : 253 – 256 .
  • Gerpen , J V . 2005 . Biodiesel processing and production . Fuel Process Technol. , 86 : 1097 – 1107 .
  • Patil , V , Tran , K-Q and Giselrød , H R . 2008 . Towards sustainable production of biofuels from microalgae . Int J Mol Sci. , 9 : 1188 – 1195 .
  • Parmar , A , Singh , N K , Pandey , A , Gnansounou , E and Madamwar , D . 2011 . Cyanobacteria and microalgae: a positive prospect for biofuels . Bioresour Technol. , 102 : 10163 – 10172 .
  • Miao , X and Wu , Q . 2006 . Biodiesel production from heterotrophic microalgal oil . Bioresour Technol. , 97 : 841 – 846 .
  • Rodolfi , L , Chini Zittelli , G , Bassi , N , Padovani , G , Biondi , N , Bonini , G and Tredici , M R . 2009 . Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor . Biotechnol Bioeng. , 102 : 100 – 112 .
  • Gouveia , L and Oliveira , A C . 2009 . Microalgae as a raw material for biofuels production . J Ind Microbiol Biotechnol. , 36 : 269 – 274 .
  • Xu , H , Miao , X and Wu , Q . 2006 . High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters . J Biotechnol. , 126 : 499 – 507 .
  • Gouveia , L , Marques , A E , da Silva , T L and Reis , A . 2009 . Neochloris oleabundans UTEX# 1185: a sui‘ renewable lipid source for biofuel production . J Ind Microbiol Biotechnol. , 36 : 821 – 826 .
  • Thompson , G A Jr. 1996 . Lipids and membrane function in green algae . Biochim Biophys Acta (BBA)-Lipids Lipid Metab. , 1302 : 17 – 45 .
  • Guschina , I A and Harwood , J L . 2006 . Lipids and lipid metabolism in eukaryotic algae . Prog Lipid Res. , 45 : 160 – 186 .
  • Lei , A , Chen , H , Shen , G , Hu , Z , Chen , L and Wang , J . 2012 . Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors . Biotechnol Biofuels. , 5 : 1 – 11 .
  • Adams , C , Godfrey , V , Wahlen , B , Seefeldt , L and Bugbee , B . 2013 . Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae . Bioresour Technol. , 131 : 188 – 194 .
  • Klok , A J , Martens , D E , Wijffels , R H and Lamers , P P . 2013 . Simultaneous growth and neutral lipid accumulation in microalgae . Bioresour Technol. , 134 : 233 – 243 .
  • Yeh , K L and Chang , J S . 2011 . Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels . Biotechnol J. , 6 : 1358 – 1366 .
  • Fernandes , B , Teixeira , J , Dragone , G , Vicente , A A , Kawano , S , Bišová , K , Přibyl , P , Zachleder , V and Vítová , M . 2013 . Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri . Bioresour Technol. , 144 : 268 – 274 .
  • Karemore , A , Pal , R and Sen , R . 2013 . Strategic enhancement of algal biomass and lipid in Chlorococcum infusionum as bioenergy feedstock . Algal Res. , 2 : 113 – 121 .
  • Praveenkumar , R , Shameera , K , Mahalakshmi , G , Akbarsha , M A and Thajuddin , N . 2012 . Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: evaluation for biodiesel production . Biomass Bioenergy. , 37 : 60 – 66 .
  • Chen , M , Tang , H , Ma , H , Holland , T C , Ng , K and Salley , S O . 2011 . Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta . Bioresour Technol. , 102 : 1649 – 1655 .
  • Xin , L , Hong-ying , H , Ke , G and Ying-xue , S . 2010 . Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp . Bioresour Technol. , 101 : 5494 – 5500 .
  • Reitan , K I , Rainuzzo , J R and Olsen , Y . 1994 . Effect of nutrient limitation on fatty acid and lipid content of marine microalgae . J Phycol. , 30 : 972 – 979 .
  • Khozin-Goldberg , I and Cohen , Z . 2006 . The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus . Phytochemistry. , 67 : 696 – 701 .
  • Elsheek , M and Rady , A . 1995 . “ Effect of phosphorus starvation on growth, photosynthesis and some metabolic processes in the unicellular green algae Chlorella kessleri, Phyton annales rei botanicae ” . 139 – 151 . Ferdinand berger soehne wiener strasse 21–23, A-3580 Horn, Austria;
  • Sato , N , Hagio , M , Wada , H and Tsuzuki , M . 2000 . Environmental effects on acidic lipids of thylakoid membranes . Biochem Soc Trans. , 28 : 912 – 914 .
  • Matthew , T , Zhou , W , Rupprecht , J , Lim , L , Thomas-Hall , S R , Doebbe , A , Kruse , O , Hankamer , B , Marx , U C and Smith , S M . 2009 . The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion . J Biol Chem. , 284 : 23415 – 23425 .
  • Roessler , P G . 1988 . Effects of silicon deficiency on lipid composition and metabolism in the diatom Cyclotella cryptica . J Phycol. , 24 : 394 – 400 .
  • Gardner , R , Peters , P , Peyton , B and Cooksey , K E . 2011 . Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the Chlorophyta . J Appl Phycol. , 23 : 1005 – 1016 .
  • Yeesang , C and Cheirsilp , B . 2011 . Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand . Bioresour Technol. , 102 : 3034 – 3040 .
  • Renaud , S M , Thinh , L-V , Lambrinidis , G and Parry , D L . 2002 . Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures . Aquaculture. , 211 : 195 – 214 .
  • Converti , A , Casazza , A A , Ortiz , E Y , Perego , P and Del Borghi , M . 2009 . Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production . Chem Eng Process: Process Intensification. , 48 : 1146 – 1151 .
  • Joh , T , Yoshida , T , Yoshimoto , M , Miyamoto , T and Hatano , S . 1993 . Composition and positional distribution of fatty acids in polar lipids from Chlorella ellipsoidea differing in chilling susceptibility and frost hardiness . Physiol Plant. , 89 : 285 – 290 .
  • McLarnon-Riches , C J , Rolph , C E , Greenway , D L and Robinson , P K . 1998 . Effects of environmental factors and metals on Selenastrum capricornutum lipids . Phytochemistry. , 49 : 1241 – 1247 .
  • Zhu , L , Zhang , X , Ji , L , Song , X and Kuang , C . 2007 . Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities . Process Biochem. , 42 : 210 – 214 .
  • Azachi , M , Sadka , A , Fisher , M , Goldshlag , P , Gokhman , I and Zamir , A . 2002 . Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina . Plant Physiol. , 129 : 1320 – 1329 .
  • Daroch , M , Shao , C , Liu , Y , Geng , S and Cheng , J J . 2013 . Induction of lipids and resultant FAME profiles of microalgae from coastal waters of Pearl River Delta . Bioresour Technol. , 146 : 192 – 199 .
  • Bartley Meridith , L , Boeing Wiebke , J , Corcoran Alina , A , Omar Holguin , F and Schaub , T . 2013 . Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms . Biomass Bioenergy. , 54 : 83 – 88 .
  • Chen , G Q , Jiang , Y and Chen , F . 2008 . Salt-induced alteration in lipid composition of diatom Nitzschia laevis (Bacillariophyceae) under heterotrophic culture condition . J Phycol. , 44 : 1309 – 1314 .
  • Suzana , Wahidin , Ani , Idris and Shaleh , SR M . 2013 . The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp . Bioresour Technol. , 129 : 7 – 11 .
  • Carvalho , A P and Malcata , F X . 2005 . Optimization of ω-3 fatty acid production by microalgae: crossover effects of CO2 and light intensity under batch and continuous cultivation modes . Marine Biotechnol. , 7 : 381 – 388 .
  • Brown , M R , Dunstan , G A , Norwood , S and Miller , K A . 1996 . Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana . J Phycol. , 32 : 64 – 73 .
  • Liang , Y , Beardall , J and Heraud , P . 2006 . Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae) . J Photochem Photobiol B. , 82 : 161 – 172 .
  • Forján , E , Garbayo , I , Henriques , M , Rocha , J , Vega , J M and Vílchez , C . 2011 . UV-A mediated modulation of photosynthetic efficiency, xanthophyll cycle and fatty acid production of Nannochloropsis . Marine Biotechnol. , 13 : 366 – 375 .
  • Skerratt , J H , Davidson , A D , Nichols , P D and McMeekin , T A . 1998 . Effect of UV-B on lipid content of three Antarctic marine phytoplankton . Phytochemistry. , 49 : 999 – 1007 .
  • Goes , J I , Handa , N , Taguchi , S , Hama , T and Saito , H . 1995 . Impact of UV radiation on the production patterns and composition of dissolved free and combined amino acids in marine phytoplankton . J Plankton Res. , 17 : 1337 – 1362 .
  • Work , V H , Radakovits , R , Jinkerson , R E , Meuser , J E , Elliott , L G , Vinyard , D J , Laurens , L M , Dismukes , G C and Posewitz , M C . 2010 . Increased lipid accumulation in the Chlamydomonas reinhardtii sta7–10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains . Eukaryotic Cell. , 9 : 1251 – 1261 .
  • Li , Y , Han , D , Hu , G , Dauvillee , D , Sommerfeld , M , Ball , S and Hu , Q . 2010 . Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol . Metab Eng. , 12 : 387 – 391 .
  • Li , Y , Han , D , Hu , G , Sommerfeld , M and Hu , Q . 2010 . Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii . Biotechnol Bioeng. , 107 : 258 – 268 .
  • Iskandarov , U , Khozin-Goldberg , I and Cohen , Z . 2011 . Selection of a DGLA-producing mutant of the microalga Parietochloris incisa: I . Identification of mutation site and expression of VLC-PUFA biosynthesis genes. Appl Microbiol Biotechnol. , 90 : 249 – 256 .
  • Radakovits , R , Eduafo , P M and Posewitz , M C . 2011 . Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum . Metab Eng. , 13 : 89 – 95 .
  • Trentacoste , E M , Shrestha , R P , Smith , S R , Gle , C , Hartmann , A and Hildebrand , M . Increased lipid accumulation without compromising growth: Metabolic engineering of lipid catabolism in Thalassiosira pseudonana . Elsevier 3rd international conference on algal biomass, biofuels and bioproducts; . June 16–19 , Toronto , Canada.
  • Lynch , D V and Thompson , G A . 1982 . Low temperature-induced alterations in the chloroplast and microsomal membranes of Dunaliella salina . Plant Physiol. , 69 : 1369 – 1375 .
  • Raison , J K . “ Alterations in the physical properties and thermal response of membrane lipids: correlations with acclimation to chilly and high temperature ” . In Frontiers of membrane research in agriculture , Edited by: St John , J B , Berlin , E and Jackson , P C . 383 – 401 . Totowa, NJ : Rowman and Allanheld .
  • Khotimchenko , S V and Yakovleva , I M . 2005 . Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance . Phytochemistry. , 66 : 73 – 79 .
  • Demirbaş , A . 2008 . Production of biodiesel from algae oils . Energy Sourc, Part A: Recov, Ut, Environ Effects. , 31 : 163 – 168 .
  • Fajardo , A R , Cerdan , L E , Medina , A R , Fernández , FG A , Moreno , PA G and Grima , E M . 2007 . Lipid extraction from the microalga Phaeodactylum tricornutum . Eur J Lipid Sci Technol. , 109 : 120 – 126 .
  • Galloway , J A , Koester , K J , Paasch , B J and Macosko , C W . 2004 . Effect of sample size on solvent extraction for detecting cocontinuity in polymer blends . Polymer. , 45 : 423 – 428 .
  • Popoola , T and Yangomodou , O . 2006 . Extraction, properties and utilization potentials of cassava seed oil . Biotechnol. , 5 : 38 – 41 .
  • Mata , T M , Martins , A A and Caetano , N S . 2010 . Microalgae for biodiesel production and other applications: a review . Renew Sustain Energy Rev. , 14 : 217 – 232 .
  • Macıas-Sánchez , M , Mantell , C , Rodrıguez , M , Martınez de la Ossa , E , Lubián , L and Montero , O . 2005 . Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana . J Food Eng. , 66 : 245 – 251 .
  • Canela , AP R , Rosa , P T , Marques , M O and Meireles , MA A . 2002 . Supercritical fluid extraction of fatty acids and carotenoids from the microalgae Spirulina maxima . Ind Eng Chem Res. , 41 : 3012 – 3018 .
  • Andrich , G , Nesti , U , Venturi , F , Zinnai , A and Fiorentini , R . 2005 . Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp . Eur J Lipid Sci Technol. , 107 : 381 – 386 .
  • Andrich , G , Zinnai , A , Nesti , U and Venturi , F . 2006 . Supercritical fluid extraction of oil from microalga Spirulina (Arthrospira) platensis . Acta Alimentaria. , 35 : 195 – 203 .
  • Wiltshire , K H , Boersma , M , Möller , A and Buhtz , H . 2000 . Extraction of pigments and fatty acids from the green alga Scenedesmus obliquus (Chlorophyceae) . Aquatic Ecol. , 34 : 119 – 126 .
  • Luque-Garcıa , J and Luque de Castro , M . 2003 . Ultrasound: a powerful tool for leaching . TrAC Trends Anal Chem. , 22 : 41 – 47 .
  • McKendry , P . 2002 . Energy production from biomass (part 2): conversion technologies . Bioresour Technol. , 83 : 47 – 54 .
  • Kim , N-J , Li , H , Jung , K , Chang , H N and Lee , P C . 2011 . Ethanol production from marine algal hydrolysates using Escherichia coli KO11 . Bioresour Technol. , 102 : 7466 – 7469 .
  • Choi , S P , Nguyen , M T and Sim , S J . 2010 . Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production . Bioresour Technol. , 101 : 5330 – 5336 .
  • Hirano , A , Ueda , R , Hirayama , S and Ogushi , Y . 1997 . CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation . Energy. , 22 : 137 – 142 .
  • Kim , M-S , Baek , J-S , Yun , Y-S , Jun Sim , S , Park , S and Kim , S-C . 2006 . Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation . Int J Hydrogen Energy. , 31 : 812 – 816 .
  • Rodjaroen , S , Juntawong , N , Mahakhant , A and Miyamoto , K . 2007 . High biomass production and starch accumulation in native green algal strains and cyanobacterial strains of Thailand . Kasetsart J Nat Sci. , 41 : 570 – 575 .
  • Dragone , G , Fernandes , B D , Abreu , A P , Vicente , A A and Teixeira , J A . 2011 . Nutrient limitation as a strategy for increasing starch accumulation in microalgae . Appl Energy. , 88 : 3331 – 3335 .
  • Behrens , P W , Bingham , S E , Hoeksema , S D , Cohoon , D L and Cox , J C . 1989 . Studies on the incorporation of CO2 into starch by Chlorella vulgaris . J Appl Phycol. , 1 : 123 – 130 .
  • Brányiková , I , Maršálková , B , Doucha , J , Brányik , T , Bišová , K , Zachleder , V and Vítová , M . 2011 . Microalgae – novel highly efficient starch producers . Biotechnol Bioeng. , 108 : 766 – 776 .
  • Hon-Nami , K and Kunito , S . 1998 . Microalgae cultivation in a tubular bioreactor and utilization of their cells . Chin J Oceanol Limnol. , 16 : 75 – 83 .
  • Yao , C , Ai , J , Cao , X , Xue , S and Zhang , W . 2012 . Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation . Bioresour Technol. , 118 : 438 – 444 .
  • Fontes , A G , Angeles Vargas , M , Moreno , J , Guerrero , M G and Losada , M . 1987 . Factors affecting the production of biomass by a nitrogen-fixing blue-green alga in outdoor culture . Biomass. , 13 : 33 – 43 .
  • Spolaore , P , Joannis-Cassan , C , Duran , E and Isambert , A . 2006 . Commercial applications of microalgae . J Biosci Bioeng. , 101 : 87 – 96 .
  • Illman , A , Scragg , A and Shales , S . 2000 . Increase in Chlorella strains calorific values when grown in low nitrogen medium . Enzyme Microb Technol. , 27 : 631 – 635 .
  • Ho , S-H , Chen , C-Y and Chang , J-S . 2012 . Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N . Bioresour Technol. , 113 : 244 – 252 .
  • Brown , M R , McCausland , M A and Kowalski , K . 1998 . The nutritional value of four Australian microalgal strains fed to Pacific oyster Crassostrea gigas spat . Aquaculture. , 165 : 281 – 293 .
  • Bondioli , P , Della Bella , L , Rivolta , G , Chini Zittelli , G , Bassi , N , Rodolfi , L , Casini , D , Prussi , M , Chiaramonti , D and Tredici , M R . 2012 . Oil production by the marine microalgae Nannochloropsis sp . F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour Technol. , 114 : 567 – 572 .
  • Becker , W . 2004 . “ Microalgae in human and animal nutrition ” . In Handbook of microalgal culture: biotechnology and applied phycology , Edited by: Richmond , A . 312 – 351 . Oxford : Blackwell; .
  • Brown , T M , Duan , P and Savage , P E . 2010 . Hydrothermal liquefaction and gasification of Nannochloropsis sp . Energy Fuels. , 24 : 3639 – 3646 .
  • Becker , E W . 1994 . Microalgae: biotechnology and microbiology , Vol. 10 , Cambridge : Cambridge University Press; .
  • López Barreiro , D , Prins , W , Ronsse , F and Brilman , W . 2013 . Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects . Biomass Bioenergy. , 53 : 113 – 127 .
  • Zou , S , Wu , Y , Yang , M , Li , C and Tong , J . 2010 . Bio-oil production from sub-and supercritical water liquefaction of microalgae Dunaliella tertiolecta and related properties . Energy Environ Sci. , 3 : 1073 – 1078 .
  • Ueda , R , Hirayama , S , Sugata , K and Nakayama , H . 1996 . Process for the production of ethanol from microalgae U.S. Patent No. 5,578,472, issued November 26
  • Ueno , Y , Kurano , N and Miyachi , S . 1998 . Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale . J Ferment Bioeng. , 86 : 38 – 43 .
  • Huntley , M E and Redalje , D G . 2007 . CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal . Mitigation Adaptation Strat Global Change. , 12 : 573 – 608 .
  • Douskova , I , Doucha , J , Machat , J , Novak , P , Umysova , D , Vitova , M and Zachleder , V . Microalgae as a means for converting flue gas CO2 into biomass with high content of starch . Proceedings of the international conference: bioenergy: challenges and opportunities; . April 6/9 , Portugal. Guimarães : Universidade do Minho .
  • Harun , R , Danquah , M K and Forde , G M . 2010 . Microalgal biomass as a fermentation feedstock for bioethanol production . J Chem Technol Biotechnol. , 85 : 199 – 203 .
  • Matsumoto , M , Yokouchi , H , Suzuki , N , Ohata , H and Matsunaga , T . 2003 . Saccharification of marine microalgae using marine bacteria for ethanol production . Appl Biochem Biotechnol. , 105 : 247 – 254 .
  • He , H , Chen , F , Li , H , Xiang , W , Li , Y and Jiang , Y . 2010 . Effect of iron on growth, biochemical composition and paralytic shellfish poisoning toxins production of Alexandrium tamarense . Harmful Algae. , 9 : 98 – 104 .
  • Harun , R and Danquah , M K . 2011 . Influence of acid pre-treatment on microalgal biomass for bioethanol production . Process Biochem. , 46 : 304 – 309 .
  • Mussatto , S I and Roberto , I C . 2004 . Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review . Bioresour Technol. , 93 : 1 – 10 .
  • Cantrell , K B , Ducey , T , Ro , K S and Hunt , P G . 2008 . Livestock waste-to-bioenergy generation opportunities . Bioresour Technol. , 99 : 7941 – 7953 .
  • Holm-Nielsen , J B , Al Seadi , T and Oleskowicz-Popiel , P . 2009 . The future of anaerobic digestion and biogas utilization . Bioresour Technol. , 100 : 5478 – 5484 .
  • Yen , H-W and Brune , D E . 2007 . Anaerobic co-digestion of algal sludge and waste paper to produce methane . Bioresour Technol. , 98 : 130 – 134 .
  • Vergara-Fernández , A , Vargas , G , Alarcón , N and Velasco , A . 2008 . Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system . Biomass Bioenergy. , 32 : 338 – 344 .
  • Mussgnug , J H , Klassen , V , Schlüter , A and Kruse , O . 2010 . Microalgae as substrates for fermentative biogas production in a combined biorefinery concept . J Biotechnol. , 150 : 51 – 56 .
  • Sialve , B , Bernet , N and Bernard , O . 2009 . Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable . Biotechnol Adv. , 27 : 409 – 416 .
  • Hu , Q . 2004 . “ Environmental effects on cell composition ” . In Handbook of microalgal culture: biotechnology and applied phycology , Edited by: Richmon , A . 83 – 94 . Oxford : Blackwell Science Ltd .
  • Goyal , H , Seal , D and Saxena , R . 2008 . Bio-fuels from thermochemical conversion of renewable resources: a review . Renew Sustain Energy Rev. , 12 : 504 – 517 .
  • Matsui , T-o , Nishihara , A , Ueda , C , Ohtsuki , M , Ikenaga , N-o and Suzuki , T . 1997 . Liquefaction of micro-algae with iron catalyst . Fuel. , 76 : 1043 – 1048 .
  • Yang , Y , Feng , C , Inamori , Y and Maekawa , T . 2004 . Analysis of energy conversion characteristics in liquefaction of algae . Resour, Conserv Recy. , 43 : 21 – 33 .
  • Huang , H , Yuan , X , Zeng , G , Wang , J , Li , H , Zhou , C , Pei , X , You , Q and Chen , L . 2011 . Thermochemical liquefaction characteristics of microalgae in sub-and supercritical ethanol . Fuel Process Technol. , 92 : 147 – 153 .
  • Balat , M . 2008 . Possible methods for hydrogen production . Energy Sourc, Part A: Recov, Ut, Environ Effects. , 31 : 39 – 50 .
  • Bridgwater , A V . 2007 . Biomass pyrolysis, IEA Bioenergy report: T34:2007:01 , Birmingham, UK : Aston University .
  • Mohan , D , Pittman , C U and Steele , P H . 2006 . Pyrolysis of wood/biomass for bio-oil: a critical review . Energy Fuels. , 20 : 848 – 889 .
  • Wang , B , Li , Y , Wu , N and Lan , C Q . 2008 . CO2 bio-mitigation using microalgae . Appl Microbiol Biotechnol. , 79 : 707 – 718 .
  • Czernik , S and Bridgwater , A . 2004 . Overview of applications of biomass fast pyrolysis oil . Energy Fuels. , 18 : 590 – 598 .
  • Grierson , S , Strezov , V , Ellem , G , Mcgregor , R and Herbertson , J . 2009 . Thermal characterisation of microalgae under slow pyrolysis conditions . J Anal Appl Pyrolysis. , 85 : 118 – 123 .
  • Nath , K and Das , D . 2003 . Hydrogen from biomass . Curr Sci. , 85 : 265 – 271 .
  • Gil , J , Corella , J , Aznar , MaP and Caballero , M A . 1999 . Biomass gasification in atmospheric and bubbling fluidized bed: effect of the type of gasifying agent on the product distribution . Biomass Bioenergy. , 17 : 389 – 403 .
  • Abuadala , A , Dincer , I and Naterer , G . 2010 . Exergy analysis of hydrogen production from biomass gasification . Int J Hydrogen Energy. , 35 : 4981 – 4990 .
  • Okabe , K , Murata , K , Nakanishi , M , Ogi , T , Nurunnabi , M and Liu , Y . 2009 . Fischer–Tropsch synthesis over Ru catalysts by using syngas derived from woody biomass . Catal Lett. , 128 : 171 – 176 .
  • RAO KK, HALL DO . 1996 . Hydrogen production by cyanobacteria: potential, problems and prospects . J Mar Biotechnol. , 4 : 10 – 15 .
  • Hansel , A and Lindblad , P . 1998 . Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source . Appl Microbiol Biotechnol. , 50 : 153 – 160 .
  • Melis , A , Zhang , L , Forestier , M , Ghirardi , M L and Seibert , M . 2000 . Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii . Plant Physiol. , 122 : 127 – 136 .
  • Ghirardi , M L , Kosourov , S , Tsygankov , A and Seibert , M . Two-phase photobiological algal H2-production system . Proceedings of the 2000 DOE hydrogen program review. Golden, CO . pp. 9 – 11 .
  • Melis , A and Happe , T . 2001 . Hydrogen production . Green algae as a source of energy. Plant Physiol. , 127 : 740 – 748 .
  • Yang , Z , Guo , R , Xu , X , Fan , X and Li , X . 2010 . Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment . Int J Hydrogen Energy. , 35 : 9618 – 9623 .
  • Angenent , L T , Karim , K , Al-Dahhan , M H , Wrenn , B A and Domíguez-Espinosa , R . 2004 . Production of bioenergy and biochemicals from industrial and agricultural wastewater . Trends Biotechnol. , 22 : 477 – 485 .
  • Das , D . 2009 . Advances in biohydrogen production processes: an approach towards commercialization . Int J Hydrogen Energy. , 34 : 7349 – 7357 .
  • Hallenbeck , P C . 2012 . “ Hydrogen production by cyanobacteria ” . In Microbial technologies in advanced biofuels production , Edited by: Hallenbeck , P C . 15 – 28 . New York : Springer .
  • Bailliez , C , Largeau , C and Casadevall , E . 1985 . Growth and hydrocarbon production of Botryococcus braunii immobilized in calcium alginate gel . Appl Microbiol Biotechnol. , 23 : 99 – 105 .
  • Hallenbeck , P C . 2012 . Microbial technologies in advanced Biofuels production , New York : Springer .
  • Hon-Nami , K . 2006 . A unique feature of hydrogen recovery in endogenous starch-to-alcohol fermentation of the marine microalga, Chlamydomonas perigranulata . Appl Biochem Biotech. , 131 : 808 – 828 .
  • Martín , M and Grossmann , I E . 2013 . Optimal engineered algae composition for the integrated simultaneous production of bioethanol and biodiesel . AIChE J. , 59 : 2872 – 2883 .
  • Puangbut , M and Leesing , R . 2012 . Integrated cultivation technique for microbial lipid production by photosynthetic microalgae and locally oleaginous yeast . World Acad Sci, Eng Technol. , 64 : 975 – 979 .
  • Xue , F , Miao , J , Zhang , X and Tan , T . 2010 . A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis . Appl Biochem Biotechnol. , 160 : 498 – 503 .
  • Chi , Z , Zheng , Y , Jiang , A and Chen , S . 2011 . Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process . Appl Biochem Biotechnol. , 165 : 442 – 453 .
  • Ferreira , L , Rodrigues , M , Converti , A , Sato , S and Carvalho , J . 2012 . Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor: use of no-cost CO2 from ethanol fermentation . Appl Energy. , 92 : 379 – 385 .
  • Lai , J-Q , Hu , Z-L , Wang , P-W and Yang , Z . 2012 . Enzymatic production of microalgal biodiesel in ionic liquid [BMIm][PF6] . Fuel. , 95 : 329 – 333 .
  • Powell , E and Hill , G . 2009 . Economic assessment of an integrated bioethanol–biodiesel–microbial fuel cell facility utilizing yeast and photosynthetic algae . Chem Eng Res Des. , 87 : 1340 – 1348 .
  • Nguyen , M T , Choi , S P , Lee , J , Lee , J H and Sim , S J . 2009 . Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production . J Microbiol Biotechnol. , 19 : 161 – 166 .
  • Lee , S , Oh , Y , Kim , D , Kwon , D , Lee , C and Lee , J . 2011 . Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains . Appl Biochem Biotechnol. , 164 : 878 – 888 .
  • Scholz Matthew , J , Riley Mark , R and Cuello , J L . 2013 . Acid hydrolysis and fermentation of microalgal starches to ethanol by the yeast Saccharomyces cerevisiae . Biomass Bioenergy. , 48 : 59 – 65 .
  • Mustaqim , D and Ohtaguchi , K . 1997 . A synthesis of bioreactions for the production of ethanol from CO2 . Energy. , 22 : 353 – 356 .
  • Pyo , D , Kim , T and Yoo , J . 2013 . Efficient extraction of bioethanol from freshwater cyanobacteria using supercritical fluid pretreatment . Bull Korean Chem Soc. , 34 : 379 – 383 .
  • Yang , Z , Guo , R , Xu , X , Fan , X and Luo , S . 2011 . Fermentative hydrogen production from lipid-extracted microalgal biomass residues . Appl Energy. , 88 : 3468 – 3472 .
  • Ho , K-L , Lee , D-J , Su , A and Chang , J-S . 2012 . Biohydrogen from lignocellulosic feedstock via one-step process . Int J Hydrogen Energy. , 37 : 15569 – 15574 .
  • Kawaguchi , H , Hashimoto , K , Hirata , K and Miyamoto , K . 2001 . H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus . J Biosci Bioeng. , 91 : 277 – 282 .
  • Ike , A , Toda , N , Hirata , K and Miyamoto , K . 1997 . Hydrogen photoproduction from CO2-fixing microalgal biomass: application of lactic acid fermentation by Lactobacillus amylovorus . J Ferment Bioeng. , 84 : 428 – 433 .
  • Samson , R and Leduy , A . 1982 . Biogas production from anaerobic digestion of Spirulina maxima algal biomass . Biotechnol Bioeng. , 24 : 1919 – 1924 .
  • Ehimen , E , Sun , Z , Carrington , C , Birch , E and Eaton-Rye , J . 2011 . Anaerobic digestion of microalgae residues resulting from the biodiesel production process . Appl Energy. , 88 : 3454 – 3463 .
  • Zamalloa , C , De Vrieze , J , Boon , N and Verstraete , W . 2012 . Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor . Appl Microbiol Biotechnol. , 93 : 859 – 869 .
  • Blonskaja , V , Menert , A and Vilu , R . 2003 . Use of two-stage anaerobic treatment for distillery waste . Adv Environ Res. , 7 : 671 – 678 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.