187
Views
23
CrossRef citations to date
0
Altmetric
Original Articles

A modelling study and optimization of catalytic reduction of NO over CeO2–MnOx (0.25)–Ba mixed oxide catalyst using design of experiments

, , , &
Pages 581-589 | Received 03 Mar 2013, Accepted 05 Aug 2013, Published online: 08 Oct 2013

References

  • Roy S, Hegde MS, Madras G. Catalysis for NOx abatement. Appl Energ. 2009;86:2283–2297. doi: 10.1016/j.apenergy.2009.03.022
  • Basfar AA, Fageeha OI, Kunnummal N, Al-Ghamdi S, Chmielewski AG, Licki J, Pawelec A, Tymin`ski B, Zimek Z. Electron beam flue gas treatment (EBFGT) technology for simultaneous removal of SO2 and NOx from combustion of liquid fuels. Fuel. 2008;87:1446–1452. doi: 10.1016/j.fuel.2007.09.005
  • Forzatti P. Present status and perspectives in de-NOx SCR catalysis. Appl Catal A. 2001;222:221–236. doi: 10.1016/S0926-860X(01)00832-8
  • Zeng Z, Lu P, Li C, Zeng G, Jiang X, Zhai Y, Fan X. Selective catalytic reduction (SCR) of NO by urea loaded on activated carbon fibre (ACF) and CeO2/ACF: The SCR mechanism. Environ Technol. 2012;33(11):1331–1337. doi: 10.1080/09593330.2011.626799
  • Kang M, Park ED, Kim JM, Yie JE. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl Catal A. 2007;327:261–269. doi: 10.1016/j.apcata.2007.05.024
  • Mondragon Rodriguez GC, Kelm K, Saruhan B. H2-selective catalytic reduction of NOx activity and microstructural analysis of new BaTi0.95Pd0.05O3 catalyst. Appl Catal A. 2010;387:173–184. doi: 10.1016/j.apcata.2010.08.012
  • Holma T, Palmqvist A, Skoglundh M, Jobson E. Continuous lean NOx reduction with hydrocarbons over dual pore system catalysts. Appl Catal B. 2004;48:95–100. doi: 10.1016/j.apcatb.2003.09.021
  • Centi G. NO reduction by C3H6 and O2 over supported noble metals part I. Role of the support on the nature of NOx adspecies and their relationship with the catalytic behavior. J Mol Catal A Chem. 2003;204–205:663–671.
  • Labhsetwar N, Minamino H, Mukherjee M, Mitsuhashi T, Rayalu S, Dhakad M, Haneda H, Subrt J, Devotta S. Catalytic properties of Ru-mordenite for NO reduction. J Mol Catal A Chem. 2007;261:213–217. doi: 10.1016/j.molcata.2006.08.013
  • Nakhostin Panahi P, Salari D, Niaei A, Mousavi SM. NO reduction over nanostructure M-Cu/ZSM-5 (M: Cr, Mn, Co and Fe) bimetallic catalysts and optimization of catalyst preparation by RSM. J Ind Eng Chem. 2013;19(6):1793–1799. doi: 10.1016/j.jiec.2013.02.022
  • Lin F, Wu X, Weng D. Effect of barium loading on CuOx–CeO2 catalysts: NOx storage capacity, NO oxidation ability and soot oxidation activity. Catal Today. 2011;175:124–132. doi: 10.1016/j.cattod.2011.03.002
  • Furfori S, Russo N, Fino D, Saracco G, Specchia V. NO SCR reduction by hydrogen generated in line on perovskite-type catalysts for automotive diesel exhaust gas treatment. Chem Eng Sci. 2010;65:120–127. doi: 10.1016/j.ces.2009.01.065
  • Amanpour J, Salari D, Niaei A, Mousavi SM, Panahi PN. Optimization of Cu/activated carbon catalyst in low temperature selective catalytic reduction of NO process using response surface methodology. J Environ Sci Health A. 2013;48:879–885. doi: 10.1080/10934529.2013.761490
  • Mousavi SM, Niaei A, Salari D, Panahi PN, Samandari M. Modeling and optimization of Mn/activate carbon nanocatalysts for NO reduction: comparison of RSM and ANN techniques. Environ Technol. 2013;34:1377–1384. doi: 10.1080/09593330.2012.750381
  • Xu H, Zhang Q, Qiu C, Lin T, Gong M, Chen Y. Tungsten modified MnOx–CeO2/ZrO2 monolith catalysts for selective catalytic reduction of NOx with ammonia. Chem Eng Sci. 2012;76:120–128. doi: 10.1016/j.ces.2012.04.012
  • Wang J, Shen M, Wang J, Cui M, Gao J, Ma J, Liu S. Preparation of FexCe1−xOy solid solution and its application in Pd-only three-way catalysts. J Environ Sci. 2012;24: 757–764. doi: 10.1016/S1001-0742(11)60816-4
  • Hong WJ, Iwamoto S, Inoue M. Direct NO decomposition over a Ce–Mn mixed oxide modified with alkali and alkaline earth species and CO2-TPD behavior of the catalysts. Catal Today. 2011;164:489–494. doi: 10.1016/j.cattod.2010.10.063
  • Qi G, Yang RT, Chang R. MnOx–CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B. 2004;51:93–106. doi: 10.1016/j.apcatb.2004.01.023
  • Qi G. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx–CeO2 catalyst. J Catal. 2003;217:434–441.
  • Eigenmann F, Maciejewski M, Baiker A. Selective reduction of NO by NH3 over manganese–cerium mixed oxides: relation between adsorption, redox and catalytic behavior. Appl Catal B. 2006;62:311–318. doi: 10.1016/j.apcatb.2005.08.005
  • Jiang D, Zhang M, Li G, Jiang H. Preparation and evaluation of MnOx–CeO2 nanospheres via a green route. Catal Commun. 2012;17:59–63. doi: 10.1016/j.catcom.2011.10.020
  • Hosseinpour V, Kazemeini M, Mohammadrezaee A. A study of the water–gas shift reaction in Ru-promoted Ir-catalysed methanol carbonylation utilising experimental design methodology. Chem Eng Sci. 2011;66: 4798–4806. doi: 10.1016/j.ces.2011.06.053
  • Myers RH, Montgomery DC. Response surface methodology: process and product optimization using designed experiments. New Jersey: John Wiley; 2002.
  • Hosseinpour V, Kazemeini M, Mohammadrezaee A. Optimisation of Ru-promoted Ir-catalysed methanol carbonylation utilising response surface methodology. Appl Catal A. 2011;394:166–175. doi: 10.1016/j.apcata.2010.12.036
  • Khuri AI, Cornell JA. Response surfaces: designs and analyses. New York: Marcel Dekker; 1996.
  • Hosseini SA, Niaei A, Salari D, Vieira RK, Sadigov S, Nabavi SR. Optimization and statistical modeling of catalytic oxidation of 2-propanol over CuMnmCo2−mO4 nano spinels by unreplicated split design methodology. J Ind Eng Chem. 2013;19:166–171. doi: 10.1016/j.jiec.2012.07.020
  • Khataee AR, Kasiri MB, Alidokht L. Application of response surface methodology in the optimization of photocatalytic removal of environmental pollutants using nanocatalysts. Environ Technol. 2011;32(15):1669–1684. doi: 10.1080/09593330.2011.597432
  • Kasiri MB, Khataee AR. Removal of organic dyes by UV/H2O2 process: modelling and optimization. Environ Technol. 2012;33(12):1417–1425. doi: 10.1080/09593330.2011.630425
  • Xu W, Yu Y, Zhang C, He H. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst. Catal Commun. 2008;9:1453–1457. doi: 10.1016/j.catcom.2007.12.012
  • Deeng KD, Mohamed AR, Bhatia S. Process optimization studies of structured Cu–ZSM-5 zeolite catalyst for the removal of NO using design of experiments (DOE). Chem Eng J. 2004;103:147–157. doi: 10.1016/j.cej.2004.05.014
  • Fathinia M, Khataee AR, Zarei M, Aber S. Comparative photocatalytic degradation of two dyes on immobilized TiO2 nanoparticles: Effect of dye molecular structure and response surface approach. J Mol Catal A Chem. 2010;333:73–84. doi: 10.1016/j.molcata.2010.09.018
  • Metkar PS, Salazar N, Muncrief R, Balakotaiah V, Harold MP. Selective catalytic reduction of NO with NH3 on iron zeolite monolithic catalysts: Steady-state and transient kinetics. Appl Catal B. 2011;104:110–126. doi: 10.1016/j.apcatb.2011.02.022
  • Ojala S, Lassi U, Perämäki P, Keiski RL. Effect of process parameters on catalytic incineration of solvent emissions. J Autom Methods Manage Chem. 2008;1–7. doi: 10.1155/2008/759141

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.