186
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Effective methods of reduction of nitrogen oxides concentration during the natural gas combustion

, &
Pages 602-610 | Received 19 Feb 2013, Accepted 05 Aug 2013, Published online: 01 Oct 2013

REFERENCES

  • Bochenek D. Central statistical office environment 2012 [Internet]. Warsaw: Gnome; 2012 [cited 2012 Sep 12]. Available from: www.stat.gov.pl
  • Wilk M, Magdziarz A. The influence of modified atmosphere on natural gas combustion. Adv Nat Gas Technol. 2012;19:479–496.
  • Shuang-Chen M, Yao JJ, Gao L. Experimental study on removal of NO using adsorption of activated carbon/ reduction decomposition of microwave heating. Environ Technol. 2012;15:1811–1817. doi: 10.1080/09593330.2011.646318
  • Wünning JA, Wünning JG. Flameless oxidation to reduce thermal NO-formation. Prog Energy Combust Sci. 1997;23:81–94. doi: 10.1016/S0360-1285(97)00006-3
  • Flamme M. Low NO x combustion technologies for high temperature applications. Energy Convers Manage. 2001;42:1919–1935. doi: 10.1016/S0196-8904(01)00051-6
  • Wilk RK. The foundations of low-emission combustion. Katowice: Publishing house Gnome; 2000. Polish.
  • Kordylewski W. Combustion and fuels. Wrocław: University of Technology; 2001. Polish.
  • Kordylewski W, editor. Low-emission techniques of combustion in energy sector. Wrocław: University of Technology; 2000. Polish.
  • Zeldowicz YB. The oxidation of nitrogen explosions. Acta Physicochemica ASSR. 1946;21:577–628.
  • Fenimore CP. Formation of nitric oxide in premixed hydrocarbon flames. Proceedings of 13th Symposium (International) on Combustion, Pittsburgh; 1971. p. 373–380.
  • Gradoń B. The role of the nitrous oxide in modelling of the NO emission from combustion processes of gaseous fuels in high temperature furnaces. Gliwice: Scientific Papers of Silesian University of Technology; 2003 Polish.
  • Hill SC, Smoot LD. Modeling of nitrogen oxides formation and destruction in combustion systems. Prog Energy Combust Sci. 2000;26:417–458. doi: 10.1016/S0360-1285(00)00011-3
  • Tomeczek J, Bialik W. Influence of combustion air heating in oil burner on pollutant emissions. Econ Fuels Energy. 2001;8: 21–26. Polish.
  • De Soete G. Overall reaction rate of NO and N2 formation from fuel nitrogen. 15th Combustion Symposium, Tokyo; 1974. p. 1011–1024.
  • Skalska K, Miller JS, Ledakowicz S. Trends in NO x abatement: a review. Sci Total Environ. 2010;408:3976–3989. doi: 10.1016/j.scitotenv.2010.06.001
  • Spliethoff H, Greul U, Rüdiger H, Hein KRG. Basic effects on NO x emissions in air staging and reburning at a bench-scale test facility. Fuel. 1996;5:560–564. doi: 10.1016/0016-2361(95)00281-2
  • Orjala M, Huotari J, Heiskanen VP. Reduction of NO x emissions from power plants firing pulverized peat, through combustion control. Arch Combust. 1995;15:129–142.
  • Lyngfelt A, Åmand LE, Leckner B. Reversed air staging – a method for reduction of N2O emissions from fluidized bed combustion of coal. Fuel. 1998;77:953–959. doi: 10.1016/S0016-2361(98)00007-6
  • Lyngfelt A, Åmand LE, Leckner B. Low N2O, NO and SO2 emissions from circulating fluidized bed boilers. 13th Proceedings of the International Conference on Fluid Bed Combustion; Orlando, Florida. 1995;13:1049–1057.
  • Kambara S, Takarada T, Toyoshima M, Kato K. Relation between functional forms of coal nitrogen and NO x emission from pulverized coal combustion. Fuel. 1995;74: 1247–1253. doi: 10.1016/0016-2361(95)00090-R
  • Teng H, Huang TS. Control of NO x emissions through combustion modifications for reheating furnaces in steel plants. Fuel. 1996;75:149–156. doi: 10.1016/0016-2361(95)00231-6
  • Ribeirete A, Costa M. Detailed measurements in a pulverized-coal-fired large-scale laboratory furnace with air staging. Fuel. 2009;88:40–45. doi: 10.1016/j.fuel.2008.07.033
  • Szecowka L. The influence of pulsation on combustion of gaseous fuels and pollution. Scientific papers of the Department of Metallurgy and Materials Engineering of the Technical University of Czestochowa; 2001; Czestochowa.
  • Krishnan A, Sekar VC, Balaji J, Boopathi SM. Prediction of NO x reduction with exhaust gas recirculation using the flame temperature correlation technique. Proceedings of the National Conference on Advances in Mechnical Engineering; Kota, India. 2006;23:378–385.
  • Sorathia HS, Rahhod PP, Sorathiya AS. Effect of exhaust gas recirculation (egr) on NO x, emission from C.I. ENGINE – a review study. Int J Adv Eng Res Studies. 2012;3: 223–227.
  • Mackrory AJ, Tree DR. Predictions of NO x in a laboratory pulverized coal combustor operating under air and oxy-fuel conditions. Combust Sci Tech. 2009;11:1413– 1430.
  • Hu YQ, Kobayashi N, Hasatani M. The reduction of recycled NO x in coal combustion with O2 recycled flue gas under low recycling ratio. Fuel. 2001;80:1851–1855. doi: 10.1016/S0016-2361(01)00048-5
  • Baltasar J, Carvalho MG, Coelho P, Costa M. Flue gas recirculation in gas fired laboratory furnace: measurements and modeling. Fuel. 1997;10:919–929. doi: 10.1016/S0016-2361(97)00093-8
  • Andries J, Becht JGM, Hoppesteyn PDJ. Pressurized fluidized bed combustion and gasification of coal using flue gas recirculation and oxygen injection. Energy Convers Manage. 1997;38:S117–S122.
  • Sänger M, Werther J, Ogada T. NO x emission characteristics from fluidized bed combustion of semi-dried municipal sewage sludge. Fuel. 2001;80:167–177. doi: 10.1016/S0016-2361(00)00093-4
  • Knill KJ. Fuel staging and its implementation in a novel internally staged burner. The International Flame Research Foundation, 1990; Ijmuiden.
  • Casaca C, Costa M. Detailed measurements in a laboratory furnace with reburning. Fuel. 2011;90:1090–1100. doi: 10.1016/j.fuel.2010.12.020
  • Hak YK, Seung WB, Se WK. Investigation of fuel lean reburning process in a 1.5 MW boiler. Appl Energy. 2012;89:183–192. doi: 10.1016/j.apenergy.2011.05.027
  • Rutar T, Kramlich JC, Malte PC, Glaborg P. Nitrous oxide emissions control by reburning. Combust Flame. 1996;107:453–463. doi: 10.1016/S0010-2180(96)00057-0
  • Bilbao R, Alzueta MU, Millera A, Cantín V. Experimental study and modelling of the burnout zone in the natural gas reburning process. Chem Eng Sci. 1995;50:2579–2587. doi: 10.1016/0009-2509(95)00119-P
  • Bilbao R, Millera A, Alzueta MU, Prada L. Evaluation of the use of different hydrocarbon fuels for gas reburning. Fuel. 1997;76:1401–1407. doi: 10.1016/S0016-2361(97)00131-2
  • Casaca C, Costa M. Detailed measurements in a laboratory furnace with reburning. Fuel. 2011;90:1090–1100. doi: 10.1016/j.fuel.2010.12.020
  • Kim HY, Baek SW, Kim SW. Investigation of fuel lean reburning process in a 1.5 MW boiler. Appl Energy. 2012;89:183–192. doi: 10.1016/j.apenergy.2011.05.027
  • Wilk R. Methods of environmental protection in the energy sector. Proceedings of VII national conference on heat management and operation of industrial furnaces; 1999; Poraj. p. 7–20. Polish.
  • Gizicki W, Kordylewski W, Salamon A. Radiation oil burner with low NO x emissions. Fuels Energy Econ. 1999;9:6–9. Polish.
  • Maly PM, Zamansky VM, Ho L, Payne R. Alternative fuel reburning. Energy and environmental research corporation, Irvine, USA; 1998.
  • Szecowka L, Poskart M. Techniques to limit NO x emissions. Advanced combustion and aerothermal technologies NATO science for peace and security series C: Environmental Security; 2007. p. 47–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.