328
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Adsorption enhancement of elemental mercury onto sulphur-functionalized silica gel adsorbents

, &
Pages 629-636 | Received 11 Mar 2013, Accepted 27 Aug 2013, Published online: 01 Oct 2013

References

  • Rao MM, Reddy DHKK, Venkateswarlu P, Seshaiah K. Removal of mercury from aqueous solutions using activated carbon prepared from agricultural y-product/waste. J Environ Manage. 2009;90:634–643. doi: 10.1016/j.jenvman.2007.12.019
  • Merrifield JD, Davids WG, MacRae JD, Amirbahman A. Uptake of mercury by thiol-grafted chitosan gel beads. Water Res. 2004;38:3132–3138. doi: 10.1016/j.watres.2004.04.008
  • Park KS, Seo YC, Lee SJ, Lee JH. Emission and speciation of mercury from various combustion sources. Powder Technol. 2008;180:151–156. doi: 10.1016/j.powtec.2007.03.006
  • Krishnan SV, Gullet BK, Jozewicz W. Mercury control in municipal waste combustors and coal-fired utilities. Environ Prog. 1997;16(1):47–53. doi: 10.1002/ep.3300160120
  • Lee JY, Ju Y, Lee SS, Keener TC, Varma RS. Novel mercury oxidant and sorbent for mercury emissions control from coal-fired power plants. Water Air Soil Pollut: Focus. 2007;8: 333–341.
  • U.S. E.P.A., Research and development-mercury in petroleum and natural gas: estimation of emissions from production, processing, and combustion (EPA/600/R-01/066), September 2001.
  • Wihelm SM, Bloom N. Mercury in petroleum. Fuel Process Technol. 2000;63:1–27. doi: 10.1016/S0378-3820(99)00068-5
  • Bloom NS. Analysis and stability of mercury speciation in petroleum hydrocarbons. J Anal Chem. 2000;366:438–443. doi: 10.1007/s002160050089
  • Astakhov AS, Koruykin GI, Ivanov MV. Nature mercury emission from earth crust in arctic and sub arctic marine environments. Geophysical Res Abstracts. 2005;7:00649.
  • Amirbahman A, Ruck PL, Fernandez IJ, Haines TA, Kahl JS. The effect of fire on mercury cycling in the soils of forested watersheds: Acadia National Park, Maine, U.S.A. Water Air Soil Pollut. 2004;152:313–331. doi: 10.1023/B:WATE.0000015369.02804.15
  • Sigler JM, Lee X, Munger W. Emission and long-range transport of gaseous mercury from a large-scale Canadian boreal forest fire. Environ Sci Technol. 2003;37(19):4343–4347. doi: 10.1021/es026401r
  • Rising WB, Lenher V. An electrolytic method for the determination of mercury in cinnabar. J Am Chem Soc. 1896;18(1):96–98. doi: 10.1021/ja02087a012
  • Chiarle S, Ratto M, Rovatt M. Mercury removal from water by ion exchange resins adsorption. Water Res. 2000;11:2971–2978. doi: 10.1016/S0043-1354(00)00044-0
  • Varshney KG, Rafiquee MZA, Somya A. Troton X-100 based cerium (IV) phosphate as a new Hg(II) selective, surfactant based fibrous ion exchanger: synthesis, characterization and adsorption behaviour. Colloids Surf A: Physicochem Eng Aspects. 2008;317:400–405. doi: 10.1016/j.colsurfa.2007.11.012
  • Eckersley N. Advanced mercury removal technologies. Hydrocarbon Technol. 2010:29–35.
  • Slejko FL, Adsorption technology: a step-by-step approach to process evaluation and application. New York: Marcel Dekker Inc.; 1985.
  • Nishino H. Process for removal of mercury vapor and adsorbent therefore. United States patent US 4500327. 1985.
  • Matviya TM, Gebhard RS, Greenbank M. Mercury adsorbent carbon molecular sieves and process for removing mercury vapor from gas streams. United States patent US 4708853. 1987.
  • Karatza D, Lancia A, Musmarra DD, Zucchini C. Study of mercury absorption and desorption on sulfur impregnated carbon. Exp Therm Fluid Sci. 2000;21:150–155. doi: 10.1016/S0894-1777(99)00065-5
  • Yang RT. Nanostructured adsorbents. Adv Chem Eng. 2001;27:77–124.
  • Wankat PC. Separation process engineering. 2nd ed. New York: Prentice Hall; 2007.
  • Meyer DE, Meeks N, Sikdar SK, Hutson ND, Hua D, Bhattacharyya D. Copper-doped silica materials silanized with bis-(triethoxy silyl propyl)-tetra sulfide for mercury vapor capture. Energy Fuels. 2008;22:2290–2298. doi: 10.1021/ef8001873
  • Khan A, Mahmood F, Khokhar MY, Ahmed S. Functionalized sol–gel material for extraction of mercury (II). React Funct Polym. 2006;66:1014–1020. doi: 10.1016/j.reactfunctpolym.2006.01.009
  • Perez-Quintanilla D, Del Hierro I, Carillo-Hermosilla F, Fajardo M, Sierra I. Adsorption of mercury ions by mercapto-functionalized amorphous silica. Anal Bioanal Chem. 2006;384:827–838. doi: 10.1007/s00216-005-0210-7
  • El-Nahhal M, El-Ashgar NM. A review on polysiloxane-immobilized ligand systems: synthesis, characterization and applications. J Organomet Chem. 2007;692: 2861–2886. doi: 10.1016/j.jorganchem.2007.03.009
  • Alcantara EFC, Faria EA, Rodrigues DV, Evangelista SM, DeOliveira E, Zara LF, Rabelo D, Prado AGS. Modification of silica gel by attachment of 2-mercaptobenzimidazole for use in removing Hg(II) from aqueous media: a thermodynamic approach. J Colloid Interf Sci. 2007;311:1–7. doi: 10.1016/j.jcis.2007.02.075
  • Meyer DE, Sikdar SK, Hutson ND, Bhattacharyya D. Examination of sulfur-functionalized, copper-doped iron particles for vapor phase mercury capture in entrained flow and fixed bed systems. Energy Fuels. 2007;21:2688–2697. doi: 10.1021/ef070120t
  • Walcarius A, Etienne M, Lebeau B. Rate of access to the binding sites in organically modified silicates. 2. Ordered mesoporous silicas grafted with amine or thiol groups. Chem Mater. 2003;15:2161–2173. doi: 10.1021/cm021310e
  • McLaughlin JB, Activated carbon adsorption for the removal of mercury from flue gas emissions [M.S. thesis]. Department of Civil and Environmental Engineering, School of Engineering. Pittsburgh (PA): University of Pittsburgh; 1995.
  • Korpiel JA, Vidic RD. Effect of sulfur impregnation method on activated carbon uptake of gas-phase mercury. Environ Sci Technol. 1997;31(8):2319–2325. doi: 10.1021/es9609260
  • Liu W, Vidic RD, Brown TD. Optimization of high temperature sulfur impregnation on activated carbon for permanent sequestration of elemental mercury vapors. Environ Sci Technol. 2000;34:483–488. doi: 10.1021/es9813008
  • Hsi HC, Rood MJ, Rostam-Abadi M, Chen S, Chang R. Mercury adsorption properties of sulfur-impregnated adsorbents. J Environ Eng. 2002;128(11):1080–1089. doi: 10.1061/(ASCE)0733-9372(2002)128:11(1080)
  • Vitolo S, Seggiani M. Mercury removal from geothermal exhaust gas by sulfur impregnated and virgin activated carbons. Geothermics. 2002;31:431–442. doi: 10.1016/S0375-6505(02)00005-6
  • Otani Y, Emi H, Kanaoka C, Uchijima I, Nishino H. Removal of mercury vapor from air with sulfur-impregnated adsorbents. Environ Sci Technol. 1988;22:708–711. doi: 10.1021/es00171a015
  • Morimoto T, Wu S, Uddin MA, Sasaoka E. Characteristics of the mercury vapor removal from coal combustion flue gas by activated carbon using H2S. Fuel. 2005;84: 1968–1974. doi: 10.1016/j.fuel.2005.04.007
  • Stober W, Frink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci. 1968;26:62–69. doi: 10.1016/0021-9797(68)90272-5
  • Liu W, Vidic RD, Brown TD. Optimization of sulfur impregnation protocol for fixed-bed application of activated carbon-based sorbents for gas-phase mercury removal. Environ Sci Technol. 1998;32(4):531–538. doi: 10.1021/es970630+
  • Granite EJ, Pennline HW, Hargis RA, Hargis A. Novel sorbents for mercury removal from flue gas. Ind Eng Chem Res. 2000;39(4):1020–1029. doi: 10.1021/ie990758v
  • El Ela MA, Mahgoub IS, Nabawi MH, Abdel Azim M. Mercury monitoring and removal at gas-processing facilities: case study of Salam gas plant. SPE Proj Fac Const. 2008;3(1):1–9.
  • Saman N, Johari K, Mat H. Effects of synthesis parameters towards morphological properties of silica xerogels. Asian J Appl Sci. 2012;5:247–251.
  • Manohar DM, Krishnan KA, Anirudhan TS. Removal of mercury (II) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole-clay. Water Res. 2002;36:1609–1619. doi: 10.1016/S0043-1354(01)00362-1
  • Wang Z, Wu G, He C. Ion-imprinted thiol-functionalized silica gel sorbent for selective separation of mercury ions. Microchim Acta. 2009;165:151–157. doi: 10.1007/s00604-008-0113-3
  • Li Y, Murphy PD, Wu CY, Powers KW, Bonzongo JCJ. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas. Environ Sci Technol. 2008;42:5304–5309. doi: 10.1021/es8000272
  • Eswaran S, Stenger HG. Gas-phase mercury adsorption rate studies. Energy Fuel. 2007;21:852–857. doi: 10.1021/ef060276d
  • Vidic RD, Siler DP. Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents. Carbon. 2001;39:3–14. doi: 10.1016/S0008-6223(00)00081-6
  • Feng W, Borguet E, Vidic RD. Sulfurization of a carbon surface for vapor phase mercury removal-II: sulfur forms and mercury uptake. Carbon. 2006;44:2998–3004. doi: 10.1016/j.carbon.2006.05.053
  • Zhao P, Guo X, Zheng C. Removal of elemental mercury by iodine-modified rice husk ash sorbents. J Environ Sci. 2010;22(10):1629–1636. doi: 10.1016/S1001-0742(09)60299-0
  • Jurng J, Lee TG, Lee GW, Lee SJ, Kim BH, Seier J. Mercury removal from incineration flue gas by organic and inorganic adsorbents. Chemosphere. 2002;47: 907–913. doi: 10.1016/S0045-6535(01)00329-0
  • Mohan D, Gupta VK, Srivastava SK, Chander S. Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste. Colloids Surf A: Physicochem Eng Aspects. 2001;177:169–181. doi: 10.1016/S0927-7757(00)00669-5
  • Li YH, Lee CW, Gullet BK. The effect of activated carbon surface moisture on low temperature mercury adsorption. Carbon. 2002;40:65–72. doi: 10.1016/S0008-6223(01)00085-9
  • Yan R, Liang DT, Tsen L, Wong YP, Lee YK. Bench scale experimental evaluation of carbon performance on mercury vapour adsorption. Fuel. 2004;83:2401–2409. doi: 10.1016/j.fuel.2004.06.031
  • Krishnan SV, Gullett BK, Jorewlczt W. Sorption of elemental mercury by activated carbons. Environ Sci Technol. 1994;28:1506–1512. doi: 10.1021/es00057a020
  • Bacon R, Tang MM. Carbonization of cellulose fibers-II. Physical property study. Carbon. 1964;2:221–225. doi: 10.1016/0008-6223(64)90036-3
  • Granite EJ, King WP, Stanko DC, Pennline HW. The implications of mercury interactions with band-gap semiconductor oxides. Main Group Chem. 2008;7(3): 227–237. doi: 10.1080/10241220802630568
  • Granite EJ, Pennline HW. Photochemical removal of mercury from flue gas. Ind Eng Chem Res. 2002;41: 5470–5476. doi: 10.1021/ie020251b

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.