655
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Effect of different plant species on nutrient removal and rhizospheric microorganisms distribution in horizontal-flow constructed wetlands

, , , &
Pages 808-816 | Received 01 Jul 2013, Accepted 27 Sep 2013, Published online: 30 Oct 2013

REFERENCES

  • Puigagut J, Villase nor J, Salas JJ, Bécares E, García J. Subsurface-flow constructed wetlands in Spain for the sanitation of small communities: a comparatives study. Ecol Eng. 2007;30:312–319. doi: 10.1016/j.ecoleng.2007.04.005
  • Cooper P. What can we learn from old wetlands? Lessons that have been learned and some that may have been forgotten over the past 20 years. Desalination. 2009;24:11–26. doi: 10.1016/j.desal.2008.03.040
  • Dan TH, Quang LN, Chiem NH, Brix H. Treatment of high-strength wastewater in tropical constructed wetlands planted with Sesbania sesban: horizontal subsurface flow versus vertical downflow. Ecol Eng. 2011;37:711–720. doi: 10.1016/j.ecoleng.2010.07.030
  • Stottmeister U, Wiessner A, Kuschk P, Kappelmeyer U, Kappstner M, Bederski O, Muller RA, Moormann H. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv. 2003;22:93–117. doi: 10.1016/j.biotechadv.2003.08.010
  • Nivala J, Knowles P, Dotro G, Garcia J, Wallace S. Clogging in subsurface-flow treatment wetlands: measurement, modeling and management. Water Res. 2012;46:1625–1640. doi: 10.1016/j.watres.2011.12.051
  • Zhai J, Zou J, He Q, Ning K, Xiao H. Variation of dissolved oxygen and redox potential and their correlation with microbial population along a novel horizontal subsurface flow wetland. Environ Technol. 2012;33:1999–2006. doi: 10.1080/09593330.2012.655320
  • Mietto A, Borin M. Performance of two small subsurface flow constructed wetlands treating domestic wastewaters in Italy. Environ Technol. 2013;34:1085–1095. doi: 10.1080/09593330.2012.733967
  • Vymazal J. Constructed wetlands for wastewater treatment: five decades of experience. Environ Sci Technol. 2011;45:61–69. doi: 10.1021/es101403q
  • Toet S, Huibers LHFA, Van Logtestijn RSP, Verhoeven JTA. Denitrification in the periphyton associated with plant shoots and in the sediment of a wetland system supplied with sewage treatment plant effluent. Hydrobiologia. 2003;501:29–44. doi: 10.1023/A:1026299017464
  • Chen ZB, Wu SB, Braeckevelt M, Paschke H, Kästner M, Köser H, Kuschk P. Effect of vegetation in pilot-scale horizontal subsurface flow constructed wetlands treating sulphate rich groundwater contaminated with a low and high chlorinated hydrocarbon. Chemosphere. 2012;89:724–731. doi: 10.1016/j.chemosphere.2012.06.042
  • Brix H. Functions of macrophytes in constructed wetlands. Water Sci Technol. 1994;29:71–78.
  • Faulwetter JL, Gagnon V, Sundberg C, Chazarenc F, Burr MD, Brisson J, Camper AK, Stein OR. Microbial processes influencing performance of treatment wetlands: a review. Ecol Eng. 2009;35:987–1004. doi: 10.1016/j.ecoleng.2008.12.030
  • Taylor CR, Hook PB, Stein OR, Zabinski CA. Seasonal effects of 19 plant species on COD removal in subsurface treatment wetland microcosms. Ecol Eng. 2011;37:703–710. doi: 10.1016/j.ecoleng.2010.05.007
  • Ottova V, Balcarova J, Vymazal J. Microbial characteristics of constructed wetlands. Water Sci Technol. 1997;35: 117–123.
  • Gagnon V, Chazarenc F, Comeau Y, Brisson J. Influence of macrophyte species on microbial density and activity in constructed wetlands. Water Sci Technol. 2007;56:249–254. doi: 10.2166/wst.2007.510
  • Zhao YJ, Li JH, Wang ZF, Yan C, Wang SB, Zhang JB. Influence of the plant development on microbial diversity of vertical-flow constructed wetlands. Biochem Syst Ecol. 2012;44:4–12. doi: 10.1016/j.bse.2012.04.012
  • Karathanasis AD, Potter CL, Coyne MS. Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecol Eng. 2003;20:157–169. doi: 10.1016/S0925-8574(03)00011-9
  • Iamchaturapatr J, Yi SW, Rhee JS. Nutrient removals by 21 aquatic plants for vertical free surface-flow (VFS) constructed wetland. Ecol Eng. 2007;29:287–293. doi: 10.1016/j.ecoleng.2006.09.010
  • Borin M, Salvato M. Effects of five macrophytes on nitrogen remediation and mass balance in wetland mesocosms. Ecol Eng. 2012;46:34–42. doi: 10.1016/j.ecoleng.2012.04.034
  • Camacho JV, Martínez AD, Gómez RG, Menasanz J. A comparative study of five horizontal subsurface flow constructed wetlands using different plant species for domestic wasterwater treatment. Environ Technol. 2007;28:1333–1343. doi: 10.1080/09593332808618897
  • Guo X, Lu X, Tong S, Dai G. Influence of environment and substrate quality on the decomposition of wetland plant root in the Sanjiang Plain, Northeast China. J Environ Sci. 2008;20:1445–1452. doi: 10.1016/S1001-0742(08)62547-4
  • García-Lledó A, Ruiz-Rueda O, Vilar-Sanz A, Sala L, Bañeras L. Nitrogen removal efficiencies in a free water surface constructed wetland in relation to plant coverage. Ecol Eng. 2011;37:678–684. doi: 10.1016/j.ecoleng.2010.06.034
  • Tunçsiper B, Ayaz S, Akça L, Gunes K. Performance of a pilot-scale, three-stage constructed wetland system for domestic wastewater treatment. Environ Technol. 2009;30:1187–1194. doi: 10.1080/09593330903144066
  • Toet S, Bouwman M, Cevaal A, Verhoeven JTA. Nutrient removal through autumn harvest of Phragmites australis and Thypha latifolia shoots in relation to nutrient loading in a wetland system used for polishing sewage treatment plant effluent. J Environ Sci Heal A. 2005;40:1133–1156. doi: 10.1081/ESE-200055616
  • Weber KP, Legge RL. Dynamics in the bacterial community-level physiological profiles and hydrological characteristics of constructed wetland mesocosms during start-up. Ecol Eng. 2011;37:666–677. doi: 10.1016/j.ecoleng.2010.03.016
  • Baudoin E, Benizri E, Guckert A. An impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem. 2003;35: 1183–1192.
  • Yu Z, Morrison M. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbol. 2004;70:4800–4806. doi: 10.1128/AEM.70.8.4800-4806.2004
  • Boon N, De Windt W, Verstraete W, Top EM. Evaluation of nested PCRDGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol Ecol. 2002;39:101–112.
  • Cocolin L, Innocente N, Biasutti M, Comi G. The late blowing in cheese: a new molecular approach based on PCR and DGGE to study the microbial ecology of the alteration process. Int J Food Microbiol. 2004;90:83–91. doi: 10.1016/S0168-1605(03)00296-4
  • Xue D, Yao HY, Ge DY, Huang CY. Soil microbial community structure in diverse land use systems: a comparative study using biolog, DGGE, and PLFA analyses. Pedosphere. 2008;18:653–663. doi: 10.1016/S1002-0160(08)60060-0
  • Vymazal J. The use constructed wetlands with horizontal sub-surfaceflow for various types of wastewater. Ecol Eng. 2009;35:1–17. doi: 10.1016/j.ecoleng.2008.08.016
  • El Hamouri B, Nazih J, Lahjouj J. Subsurface-horizontal flow constructed wetland for sewage treatment under Moroccan climate conditions. Desalination. 2007;215:153–158. doi: 10.1016/j.desal.2006.11.018
  • Gersberg RM, Elkins BV, Lyon SR, Goldman CR. Role of aquatic plants in wastewater treatment by artificial wetlands. Water Res. 1986;20:363–368. doi: 10.1016/0043-1354(86)90085-0
  • Brisson J, Chazarenc F. Maximizing pollutant removal in constructed wetlands: should we pay more attention to macrophyte species selection? Ecol Eng. 2009;407: 3923–3930.
  • Maddison M, Mauring T, Remm K, Lesta M, Mander Ü. Dynamics of Typha latifolia L. populations in treatment wetlands in Estonia. Ecol Eng. 2009;35:258–264. doi: 10.1016/j.ecoleng.2008.06.003
  • Gottschall N, Boutin C, Crolla A, Kinsley C, Champagne P. The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecol Eng. 2007;29:154–163. doi: 10.1016/j.ecoleng.2006.06.004
  • Luederitz V, Eckert E, Lange-Weber M, Lange A, Gersberg RM. Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands. Ecol Eng. 2001;18:157–171. doi: 10.1016/S0925-8574(01)00075-1
  • Zhao XH, Zhao YQ, Kearney P. Phosphorus recovery as AlPO4 from beneficially reused aluminium sludge arising from water treatment. Environ Technol. 2013;34:263–268. doi: 10.1080/09593330.2012.692714
  • Öövel M, Tooming A, Mauring T, Mander Ü. Schoolhouse wastewater purification in a LWA-filled hybrid constructed wetland in Estonia. Ecol Eng. 2007;29:17–26. doi: 10.1016/j.ecoleng.2006.07.010
  • Vohla C, Kõiva M, Bavor HJ, Chazarenc F, Mander Ü. Filter materials for phosphorus removal from wastewater in treatment wetlands – a review. Ecol Eng. 2011;37:70–89. doi: 10.1016/j.ecoleng.2009.08.003
  • Vymazal J. Removal of nutrients in various types of constructed wetlands. Sci Total Environ. 2007;380:48–65. doi: 10.1016/j.scitotenv.2006.09.014
  • Tanner CC. Plants as ecosystem engineers in subsurface-flow treatment wetlands. Water Sci Technol. 2001;44:9–17.
  • Kallner Bastviken S, Eriksson PG, Premrov A, Tonderski K. Potential denitrification in wetland sediments with different plant species detritus. Ecol Eng. 2005;25:183–190. doi: 10.1016/j.ecoleng.2005.04.013
  • Lai WL, Wang SQ, Peng CL, Chen ZH. Root features related to plant growth and nutrient removal of 35 wetland plants. Water Res. 2011;45:3941–3950. doi: 10.1016/j.watres.2011.05.002
  • Salvato M, Borin M, Doni S, Macci C, Ceccanti B, Marinari S, Masciandaro G. Wetland plants, microorganisms and enzymatic activities interrelations in treating N polluted water. Ecol Eng. 2012;47:36–43. doi: 10.1016/j.ecoleng.2012.06.033
  • Srinandan CS, Shah M, Patel B, Nerurkar AS. Assessment of denitrifying bacterial composition in activated sludge. Bioresour Technol. 2011;102:9481–9489. doi: 10.1016/j.biortech.2011.07.094
  • Kariminiaae HR, Kanda K, Kato F. Denitrification activity of the bacterium Pseudomonas sp. ASM-2–3 isolated from the Ariake Sea tideland. J Biosci Bioeng. 2004;97:39–44.
  • Behrendta U, Schumannb P, Stieglmeierc M, Pukall R, Augustin J, Spröer C, Schwendner P, Moissl-Eichinger C, Ulrich A. Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity–description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room. Syst Appl Microbiol. 2010;33:328–336. doi: 10.1016/j.syapm.2010.07.004
  • Schirawski J, Unden G. Anaerobic respiration of Bacillus macerans with fumarate, TMAO, nitrate and nitrite and regulation of the pathways by oxygen and nitrate. Arch Microbiol. 1995;163:148–154. doi: 10.1007/BF00381790
  • Heylen K, Vanparys B, Wittebolle L, Verstraete W, Boon N, De Vos P. Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study. Appl Environ Microbiol. 2006;72:2637–2643. doi: 10.1128/AEM.72.4.2637-2643.2006
  • Zhao C, Zhang Y, Li XB, Wen DH, Tang XY. Biodegradation of carbazole by the seven Pseudomonas sp. strains and their denitrification potential. J Hazard Mater. 2011;190:253–259. doi: 10.1016/j.jhazmat.2011.03.036
  • Mergaert J, Boley A, Cnockaert MC, Müller WR, Swings J. Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor. Syst Appl Microbiol. 2001;24:303–310.
  • Kadlec RH, Knight RL. Treatment wetlands. 1st ed. Boca Raton, FL: CRC Press; 1996.
  • Paredes D, Kuschk P, Mbwette TSA, Stange F, Muller RA, Köser H. New aspects of microbial nitrogen transformations in the context of wastewater treatment – a review. Eng Life Sci. 2007;7:13–25. doi: 10.1002/elsc.200620170
  • Paul EA, Clark FE. Soil microbiology and biochemistry. San Diego, CA: Academic Press, Inc.; 1989.
  • Saeed T, Sun G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. J Environ Manage. 2012;112: 429–448. doi: 10.1016/j.jenvman.2012.08.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.