255
Views
41
CrossRef citations to date
0
Altmetric
Original Articles

Generalized regression neural network-based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River, Oregon, USA

Pages 1650-1657 | Received 15 Oct 2013, Accepted 15 Dec 2013, Published online: 22 Jan 2014

References

  • UK Technical Advisory Group on the Water Framework Directive. UK environmental standards and conditions (phase 1). Final report, London (UK); 2008. p.73. Available from: http://www.wfduk.org/
  • Williams RJ, Boorman DB. Modelling in-stream temperature and dissolved oxygen at sub-daily time steps: an application to the River Kennet, UK. Sci Total Environ. 2012;423:104–110. doi: 10.1016/j.scitotenv.2012.01.054
  • Moore DJ, Ross J. Spokane river and lake Spokane dissolved oxygen total maximum daily load: water quality improvement report. Publication No. 07-10-073.P399. 2010. Available from: http://www.ecy.wa.gov/biblio/0710073.html
  • Nakova E, Linnebank FE, Bredeweg B, Salles P, Uzunov Y. The river Mesta case study: a qualitative model of dissolved oxygen in aquatic ecosystems. Ecol Inform. 2009;4:339–357. doi: 10.1016/j.ecoinf.2009.09.015
  • Cox BA. A review of dissolved oxygen modelling techniques for lowland rivers. Sci Total Environ. 2003;314–316:303–334. doi: 10.1016/S0048-9697(03)00062-7
  • Cox BA. A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers. Sci Total Environ. 2003;314–316:335–377. doi: 10.1016/S0048-9697(03)00063-9
  • Garcia A, Revilla JA, Medina R, Alvarez C, Juanes JA. A model for predicting the temporal evolution of dissolved oxygen concentration in shallow estuaries. Hydrobiologia. 2002;475–476:205–211. doi: 10.1023/A:1020365225564
  • Martin S, Effler S, DePinto J, Trama F, Rodgers P, Dobi J, Wodka M. Dissolved oxygen model for a dynamic reservoir. ASCE J Environ Eng. 1985;111(4):647–664. doi: 10.1061/(ASCE)0733-9372(1985)111:5(647)
  • Zielinski P. Stochastic dissolved oxygen model. ASCE J Environ Eng. 1988;114(1):74–90. doi: 10.1061/(ASCE)0733-9372(1988)114:1(74)
  • Abdul-Aziz O, Wilson B, Gulliver J. Calibration and validation of an empirical dissolved oxygen model. ASCE J Environ Eng. 2007;133(7):698–710. doi: 10.1061/(ASCE)0733-9372(2007)133:7(698)
  • Turner D, Pelletier G, Kasper B. Dissolved oxygen and pH modeling of a periphyton dominated, nutrient enriched river. ASCE J Environ Eng. 2009;135(8):645–652. doi: 10.1061/(ASCE)0733-9372(2009)135:8(645)
  • Schmid B, Koskiaho J. Artificial neural network modeling of dissolved oxygen in a wetland pond: the case of Hovi Finland. ASCE J Hydrol Eng. 2006;11(2):188–192. doi: 10.1061/(ASCE)1084-0699(2006)11:2(188)
  • Akkoyunlu A, Altun H, Cigizoglu H. Depth-integrated estimation of dissolved oxygen in a lake. ASCE J Environ Eng. 2011;137(10):961–967. doi: 10.1061/(ASCE)EE.1943-7870.0000376
  • Ay M, Kisi O. Modeling of dissolved oxygen concentration using different neural network techniques in foundation creek, El Paso County, Colorado. ASCE J Environ Eng. 2012;138(6):654–662. doi: 10.1061/(ASCE)EE.1943-7870.0000511
  • Antanasijević D, Pocajt V, Povrenović D, Perić-Grujić A, Ristić M. Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study. Environ Sci Pollut Res. 2013;20(12): 9006–9013. doi: 10.1007/s11356-013-1876-6
  • Sullivan AB, Snyder DM, Rounds SA. Controls on biochemical oxygen demand in the upper Klamath River, Oregon. Chem Geol. 2010;269:12–21. doi: 10.1016/j.chemgeo.2009.08.007
  • Mrazik S. Oregon water quality index summary water years 1997–2006. Oregon Department of Environmental Quality. DEQ07-LAB-007-TR. 2007; p. 13. Available from: http://www.deq.state.or.us
  • Oregon Department of Environmental Quality. Oregon's 2004/2006 Integrated Report. 2007 [cited 2008 Dec 17]. Available from: http://www.deq.state.or.us/wq/assessment/rpt0406.htm
  • Sullivan AB, Deas ML, Asbill J, Kirshtein JD, Butler K, Stewart MA, Wellman RW, Vaughn J. Klamath River water quality and acoustic Doppler current profiler data from Link River Dam to Keno Dam, 2007. US Geological Survey Open-File Report, 2008–1185. 2008; p. 24. Available from: http://pubs.usgs.gov/of/2008/1185/
  • Sullivan AB, Deas ML, Asbill J, Kirshtein JD, Butler K, Vaughn J. Klamath River water quality data from Link River Dam to Keno Dam, Oregon, 2008. US Geological Survey Open-File Report, 2009–1105. 2009; p. 25. Available from: http://pubs.usgs.gov/of/2009/1105/
  • USGS Oregon Water Science Center. 2012. http://water.usgs.gov
  • Heddam S, Bermad A, Dechemi N. ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study. Environ Monit Assess. 2012;184:1953–1971. doi: 10.1007/s10661-011-2091-x
  • Specht DF. A general regression neural network. IEEE Trans Neural Netw. 1991;2(6):568–76. doi: 10.1109/72.97934
  • Patterson DW. Artificial neural networks theory and applications. Korea: Prentice Hall International Editions; 1996.
  • Heddam S, Bermad A, Dechemi N. Applications of radial-basis function and generalized regression neural networks for modeling of coagulant dosage in a drinking water-treatment plant: comparative study. ASCE J Environ Eng. 2011;137(12):1209–1214. doi: 10.1061/(ASCE)EE.1943-7870.0000435
  • Fahmy M, Moselhi O. Forecasting the remaining useful life of cast iron water mains. ASCE J Perform Constr Facil. 2009;23(4):269–275. doi: 10.1061/(ASCE)0887-3828(2009)23:4(269)
  • Cigizoglu H. Application of generalized regression neural networks to intermittent flow forecasting and estimation. ASCE J Hydrol Eng. 2005;10(4):336–341. doi: 10.1061/(ASCE)1084-0699(2005)10:4(336)
  • Pal M, Deswal S. Modeling pile capacity using support vector machines and generalized regression neural network. ASCE J Geotech Geoenviron Eng. 2008;134(6):1021–1024. doi: 10.1061/(ASCE)1090-0241(2008)134:7(1021)
  • Günaydın K, Günaydın A. Tsunami run-up height forecasting by using artificial neural networks. Civil Eng Environ Syst. 2011;28(2):165–181. doi: 10.1080/10286608.2010.526703
  • Willmott CJ. Some comments on the evaluation of model performance, Bull Am Meteorol Soc. 1982;63:1309–1313. doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.