432
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Bioengineering options and strategies for the optimization of anaerobic digestion processes

, &
Pages 1-14 | Received 06 Dec 2013, Accepted 16 Mar 2014, Published online: 17 Apr 2014

References

  • Weiland P. Biogas production: current state and perspectives. Appl Microbiol Biotechnol. 2011;85:849–860. doi: 10.1007/s00253-009-2246-7
  • Chan YJ, Chong MF, Law CL, Hassell DG. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem Eng J. 2009;155:1–18. doi: 10.1016/j.cej.2009.06.041
  • Parkin G, Owen W. Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng. 1986;112:867–920. doi: 10.1061/(ASCE)0733-9372(1986)112:5(867)
  • Sekiguchi Y, Kamagata Y, Harada H. Recent advances in methane fermentation technology. Curr Opin Biotechnol. 2001;12:277–282. doi: 10.1016/S0958-1669(00)00210-X
  • Mata-Alvarez J, Macé S, Llabrés P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol. 2000;74:3–16.
  • Bouallagui H, Touhami Y, Ben Cheikh R, Hamdi M. Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem. 2005;40:989–995. doi: 10.1016/j.procbio.2004.03.007
  • Bishop C, Shumway C. The economics of dairy anaerobic digestion with coproduct marketing. Appl Econ Perspect Policy. 2009;31:394–410.
  • Kryvoruchko V, Machmüller A, Bodiroza V, Amon B, Amon T. Anaerobic digestion of by-products of sugar beet and starch potato processing. Biomass Bioenergy. 2009;33:620–627. doi: 10.1016/j.biombioe.2008.10.003
  • Clemens J, Trimborn M, Weiland P, Amon B. Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric Ecosyst Environ. 2006;112:171–177. doi: 10.1016/j.agee.2005.08.016
  • Iacovidou E, Ohandja DG, Voulvoulis N. Food waste co-digestion with sewage sludge – realising its potential in the UK. J Environ Manage. 2012;112:267–274. doi: 10.1016/j.jenvman.2012.07.029
  • Ward AJ, Hobbs PJ, Holliman PJ, Jones DL. Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol. 2008;99:7928–7940. doi: 10.1016/j.biortech.2008.02.044
  • Ince O. Performance of a two-phase anaerobic digestion system when treating dairy wastewater. Water Res. 1998;32:2707–2713. doi: 10.1016/S0043-1354(98)00036-0
  • Demirer GN, Chen S. Two-phase anaerobic digestion of unscreened dairy manure. Process Biochem. 2005;40:3542–3549. doi: 10.1016/j.procbio.2005.03.062
  • Stroot PG, McMahon KD, Mackie RI, Raskin L. Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions. 1. Digester performance. Water Res. 2001;35:1804–1816. doi: 10.1016/S0043-1354(00)00439-5
  • Appels L, Baeyens J, Degrève J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci. 2008;34:755–781. doi: 10.1016/j.pecs.2008.06.002
  • Bouallagui H, Marouani L, Hamdi M. Performances comparison between laboratory and full-scale anaerobic digesters treating a mixture of primary and waste activated sludge. Resour Conserv Recy. 2010;55:29–33. doi: 10.1016/j.resconrec.2010.06.012
  • Angelidaki I, Ahring BK, Ahring BK. Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Sc Technol. 2000;41: 189–194.
  • Khanal SK, Grewell D, Sung S, van Leeuwen J. Ultrasound applications in wastewater sludge pretreatment: a review. Crit Rev Environ Sci Technol. 2007;37:277–313. doi: 10.1080/10643380600860249
  • Wang W, Hou H, Hu S, Gao X. Performance and stability improvements in anaerobic digestion of thermally hydrolyzed municipal biowaste by a biofilm system. Bioresour Technol. 2010;101:1715–1721. doi: 10.1016/j.biortech.2009.10.010
  • Apul OG, Sanin FD. Ultrasonic pretreatment and subsequent anaerobic digestion under different operational conditions. Bioresour Technol. 2010;101:8984–8992. doi: 10.1016/j.biortech.2010.06.128
  • Stafford DA. The effects of mixing and volatile fatty acid concentrations on anaerobic digester performance. Biomass. 1982;2:43–55. doi: 10.1016/0144-4565(82)90006-3
  • Zhang Y, Banks CJ. Co-digestion of the mechanically recovered organic fraction of municipal solid waste with slaughterhouse wastes. Biochem Eng J. 2012;68:129–137. doi: 10.1016/j.bej.2012.07.017
  • Zhang Y, Banks CJ, Heaven S. Co-digestion of source segregated domestic food waste to improve process stability. Bioresour Technol. 2012;114:168–178. doi: 10.1016/j.biortech.2012.03.040
  • Zhang Y, Zamudio Canas EM, Zhu Z, Linville JL, Chen S, He Q. Robustness of archaeal populations in anaerobic co-digestion of dairy and poultry wastes. Bioresour Technol. 2011;102(2):779–785. doi: 10.1016/j.biortech.2010.08.104
  • Siles JA, Martin MA, Chica AF, Martin A. Anaerobic co-digestion of glycerol and wastewater derived from biodiesel manufacturing. Bioresour Technol. 2010;101:6315–6321. doi: 10.1016/j.biortech.2010.03.042
  • Chen G, Zheng Z, Yang S, Fang C, Zou X, Zhang J. Improving conversion of Spartina alterniflora into biogas by co-digestion with cow feces. Fuel Process Technol. 2010;91:1416–1421. doi: 10.1016/j.fuproc.2010.05.015
  • Chen G, Zheng Z, Yang S, Fang C, Zou X, Luo Y. Experimental co-digestion of corn stalk and vermicompost to improve biogas production. Waste Manage. 2010;30:1834–1840. doi: 10.1016/j.wasman.2010.03.014
  • Callaghan FJ, Luecke K, Wase DA, Thayanithy K, Forster CF. Co-digestion of cattle slurry and waste milk under shock loading conditions. J Chem Technol Boitechnol. 1999;68:405–410. doi: 10.1002/(SICI)1097-4660(199704)68:4<405::AID-JCTB648>3.0.CO;2-X
  • Callaghan FJ, Wase DAJ, Thayanithy K, Forster CF. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy. 2002;22:71–77. doi: 10.1016/S0961-9534(01)00057-5
  • Yen H.-W, Brune DE. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol. 2007;98:130–134. doi: 10.1016/j.biortech.2005.11.010
  • Wang H, Lehtomäki A, Tolvanen K, Puhakka J, Rintala J. Impact of crop species on bacterial community structure during anaerobic co-digestion of crops and cow manure. Bioresour Technol. 2009;100:2311–2315. doi: 10.1016/j.biortech.2008.10.040
  • Martin-Gonzalez L, Castro R, Pereira MA, Alves MM, Font X, Vicent T. Thermophilic co-digestion of organic fraction of municipal solid wastes with FOG wastes from a sewage treatment plant: reactor performance and microbial community monitoring. Bioresour Technol. 2011;102:4734–4741. doi: 10.1016/j.biortech.2011.01.060
  • Supaphol S, Jenkins SN, Intomo P, Waite IS, Donnell AG. Microbial community dynamics in mesophilic anaerobic co-digestion of mixed waste. Bioresour Technol. 2011;102:4021–4027. doi: 10.1016/j.biortech.2010.11.124
  • Ãlvarez JA, Otero L, Lema JM. A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour Technol. 2010;101: 1153–1158. doi: 10.1016/j.biortech.2009.09.061
  • McMahon KD, Stroot PG, Mackie RI, Raskin L. Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions II: microbial population dynamics. Water Res. 2001;35:1817–1827. doi: 10.1016/S0043-1354(00)00438-3
  • Kaparaju P, Buendia I, Ellegaard L, Angelidakia I. Effects of mixing on methane production during thermophilic anaerobic digestion of manure: lab-scale and pilot-scale studies. Bioresour Technol. 2008;99:4919–4928. doi: 10.1016/j.biortech.2007.09.015
  • Akarsubasi AT, Ince O, Kirdar B, Oz NA, Orhon D, Curtis TP, Head IM, Ince BK. Effect of wastewater composition on archaeal population diversity. Water Res. 2005;39:1576–1584. doi: 10.1016/j.watres.2004.12.041
  • Rincón B, Borja R, González JM, Portillo MC, Sáiz-Jiménez C. Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of one-stage anaerobic digestion of two-phase olive mill solid residue. Biochem Eng J. 2008;40:253–261. doi: 10.1016/j.bej.2007.12.019
  • Chen S, Zamudio Cañas EM, Zhang Y, Zhu Z, He Q. Impact of substrate overloading on archaeal populations in anaerobic digestion of animal waste. J Appl Microbiol. 2012;113:1371–1379. doi: 10.1111/jam.12001
  • Gomez E, Martin J, Michel FC. Effects of organic loading rate on reactor performance and archaeal community structure in mesophilic anaerobic digesters treating municipal sewage sludge. Waste Manage Res. 2011;29: 1117–1123. doi: 10.1177/0734242X11417985
  • Bialek K, Kumar A, Mahony T, Lens PNL, O'Flaherty V. Microbial community structure and dynamics in anaerobic fluidized-bed and granular sludge-bed reactors: influence of operational temperature and reactor configuration. Microbl Biotechnol. 2012;5:738–752. doi: 10.1111/j.1751-7915.2012.00364.x
  • Fernández AS, Hashsham SA, Dollhopf SL, Raskin L, Glagoleva O, Dazzo FB, Hickey RF, Criddle CS, Tiedje JM. Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol. 2000;66:4058–4067. doi: 10.1128/AEM.66.9.4058-4067.2000
  • Fernández A, Huang S, Seston S, Xing J, Hickey R, Criddle C, Tiedje J. How stable is stable? Function versus community composition. Appl Environ Microbiol. 1999;65:3697–3697.
  • Kaewpipat K, GradyJr CP. Microbial population dynamics in laboratory-scale activated sludge reactors. Water Sci Technol. 2002;46:19–27.
  • Zumstein E, Moletta R, Godon J.-J. Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis. Environ Microbiol. 2000;2:69–78. doi: 10.1046/j.1462-2920.2000.00072.x
  • Wang X, Wen X, Criddle C, Yan H, Zhang Y, Ding K. Bacterial community dynamics in two full-scale wastewater treatment systems with functional stability. J Appl Microbiol. 2010;109:1218–1226. doi: 10.1111/j.1365-2672.2010.04742.x
  • Wang X, Wen X, Yan H, Ding K, Zhao F, Hu M. Bacterial community dynamics in a functionally stable pilot-scale wastewater treatment plant. Bioresour Technol. 2011;102:2352–2357. doi: 10.1016/j.biortech.2010.10.095
  • Feng XM, Karlsson A, Svensson BH, Bertilsson S. Impact of trace element addition on biogas production from food industrial waste – linking process to microbial communities. FEMS Microbiol Ecol. 2011;74:226–240. doi: 10.1111/j.1574-6941.2010.00932.x
  • Blume F, Bergmann I, Nettmann E, Schelle H, Rehde G, Mundt K, Klocke M. Methanogenic population dynamics during semi-continuous biogas fermentation and acidification by overloading. J Appl Microbiol. 2010;109: 441–450.
  • Demirel B, Scherer P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Sci Biotechnol. 2008;7:173–190. doi: 10.1007/s11157-008-9131-1
  • Talbot G, Topp E, Palin MF, Massé D. Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res. 2008;42:513–537. doi: 10.1016/j.watres.2007.08.003
  • Kröber M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, Miller D, Runte KJ, Viehöver P, Pühler A, Schlüter A. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol. 2009;142:38–49. doi: 10.1016/j.jbiotec.2009.02.010
  • Schlüter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann K.-H, Krahn I, Krause L, Krömeke H, Kruse O, Mussgnug JH, Neuweger H, Niehaus K, Pühler A, Runte KJ, Szczepanowski R, Tauch A, Tilker A, Viehöver P, Goesmann A. The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol. 2008;136:77–90. doi: 10.1016/j.jbiotec.2008.05.008
  • Werner JJ, Knights D, Garcia ML, Scalfone NB, Smith S, Yarasheski K, Cummings TA, Beers AR, Knight R, Angenent LT. Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc Natl Acad Sci US A. 2012;108:4158–4163. doi: 10.1073/pnas.1015676108
  • Braber K. Anaerobic digestion of municipal solid waste: a modern waste disposal option on the verge of breakthrough. Biomass Bioenergy. 1995;9:365–376. doi: 10.1016/0961-9534(95)00103-4
  • O'Flaherty V, Collins G, Mahony T, se. The microbiology and biochemistry of anaerobic bioreactors with relevance to domestic sewage treatment. Rev Environ Sci Biotechnol. 2006;5:39–55. doi: 10.1007/s11157-005-5478-8
  • Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol. 2006;72:1623–1630. doi: 10.1128/AEM.72.2.1623-1630.2006
  • Garcia J.-L, Patel BKC, Ollivier B. Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe. 2000;6:205–226. doi: 10.1006/anae.2000.0345
  • Van Den Berg L, Lamb KA, Murray WD, Armstrong DW. Effects of sulphate, iorn and hydrogen on the microbiological conversion of acetic acid to methane. J Appl Bacteriol. 1980;48:437–447. doi: 10.1111/j.1365-2672.1980.tb01033.x
  • Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol. 1999;28: 193–202. doi: 10.1111/j.1574-6941.1999.tb00575.x
  • Schnürer A, Zellner G, Svensson BH. Mesophilic syntrophic acetate oxidation during methane formation in biogas reactors. FEMS Microbiol Ecol. 1999;29:249–261. doi: 10.1016/S0168-6496(99)00016-1
  • Zhang B, Cai WM, He PJ. Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes. J Environ Sci. 2007;19:244–249. doi: 10.1016/S1001-0742(07)60040-0
  • Qu X, Mazéas L, Vavilin VA, Epissard J, Lemunier M, Mouchel J.-M, He P.-j, Bouchez T. Combined monitoring of changes in δ 13CH4 and archaeal community structure during mesophilic methanization of municipal solid waste. FEMS Microbiol Ecol. 2009;68:236–245. doi: 10.1111/j.1574-6941.2009.00661.x
  • Wang Y, Zhang Y, Wang J, Meng L. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenergy. 2009;33:848–853. doi: 10.1016/j.biombioe.2009.01.007
  • Laukenmann S, Polag D, Heuwinkel H, Greule M, Gronauer A, Lelieveld J, Keppler F. Identification of methanogenic pathways in anaerobic digesters using stable carbon isotopes. Eng Life Sci. 2011;10:509–514. doi: 10.1002/elsc.201000074
  • Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci. 2008;105:11512–11519. doi: 10.1073/pnas.0801925105
  • Wang Q, Garrity GM, Tiedje JM, Cole JR. Na&inodot;¨ve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07
  • Thauer RK, Kaster A.-K, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol. 2008;6: 579–591. doi: 10.1038/nrmicro1931
  • Luo H, Sun Z, Arndt W, Shi J, Friedman R, Tang J. Gene order phylogeny and the evolution of methanogens. PLoS ONE. 2009;4:e6069. doi: 10.1371/journal.pone.0006069
  • Liu Y, Whitman WB. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann New York Acad Sci. 2008;1125:171–189. doi: 10.1196/annals.1419.019
  • Delbès C, Moletta R, Godon J.-J. Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem. FEMS Microbiol Ecol. 2001;35:19–26. doi: 10.1016/S0168-6496(00)00107-0
  • Leclerc M, Delbes C, Moletta R, Godon J.-J. Single strand conformation polymorphism monitoring of 16S rDNA Archaea during start-up of an anaerobic digester. FEMS Microbiol Ecol. 2001;34:213–220. doi: 10.1111/j.1574-6941.2001.tb00772.x
  • Lee C, Kim J, Shin SG, Hwang S. Monitoring bacterial and archaeal community shifts in a mesophilic anaerobic batch reactor treating a high-strength organic wastewater. FEMS Microbiol Ecol. 2008;65:544–554. doi: 10.1111/j.1574-6941.2008.00530.x
  • Xia Y, Cai L, Zhang T, Fang HHP. Effects of substrate loading and co-substrates on thermophilic anaerobic conversion of microcrystalline cellulose and microbial communities revealed using high-throughput sequencing. Int J Hydrogen Energy. 2012;37:13652–13659. doi: 10.1016/j.ijhydene.2012.02.079
  • Nelson MC, Morrison M, Schanbacher F, Yu Z. Shifts in microbial community structure of granular and liquid biomass in response to changes to infeed and digester design in anaerobic digesters receiving food-processing wastes. Bioresour Technol. 2012;107:135–143. doi: 10.1016/j.biortech.2011.12.070
  • Shen P, Zhang J, Zhang J, Jiang C, Tang X, Li J, Zhang M, Wu B. Changes in microbial community structure in two anaerobic systems to treat bagasse spraying wastewater with and without addition of molasses alcohol wastewater. Bioresour Technol. 2013;131:333–340. doi: 10.1016/j.biortech.2012.12.147
  • Syutsubo K, Nagaya Y, Sakai S, Miya A. Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process. Water Sci Technol. 2005;52: 79–84.
  • Tang Y, Shigematsu T, Morimura S, Kida K. Microbial community analysis of mesophilic anaerobic protein degradation process using bovine serum albumin (BSA)-fed continuous cultivation. J Biosci Bioeng. 2005;99: 150–164. doi: 10.1263/jbb.99.150
  • Ziganshin A, Schmidt T, Scholwin F, Il'inskaya O, Harms H, Kleinsteuber S. Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles. Appl Microbiol Biotechnol. 2011;89:2039–2052. doi: 10.1007/s00253-010-2981-9
  • Kampmann K, Ratering S, Kramer I, Schmidt M, Zerr W, Schnell S. Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates. Appl Environ Microbiol. 2012;78:2106–2119. doi: 10.1128/AEM.06394-11
  • Sousa DZ, Pereira MA, Alves JI, Smidt H, Stams AJM, Alves MM. Anaerobic microbial LCFA degradation in bioreactors. Water Sci Technol. 2008;57:439–444. doi: 10.2166/wst.2008.090
  • Sousa DZ, Pereira MA, Stams AJM, Alves MM, Smidt H. Microbial communities involved in anaerobic degradation of unsaturated or saturated long-chain fatty acids. Appl Environ Microbiol. 2007;73:1054–1064. doi: 10.1128/AEM.01723-06
  • Cirne DG, Paloumet X, Bjornsson L, Alves MM, Mattiasson B. Anaerobic digestion of lipid-rich waste – effects of lipid concentration. Renew Energy. 2007;32:965–975. doi: 10.1016/j.renene.2006.04.003
  • Xu Q, Gao W, Ding S.-Y, Kenig R, Shoham Y, A.Bayer E, Lamed R. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J Bacteriol. 2003;185: 4548–4557. doi: 10.1128/JB.185.15.4548-4557.2003
  • Suen G, Stevenson DM, Bruce DC, Chertkov O, Copeland A, Cheng J.-F, Detter C, Detter JC, Goodwin LA, Han CS, Hauser LJ, Ivanova NN, Kyrpides NC, Land ML, Lapidus A, Lucas S, Ovchinnikova G, Pitluck S, Tapia R, Woyke T, Boyum J, Mead D, Weimer2 PJ. Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7. J Bacteriol. 2011;193:5574–5575. doi: 10.1128/JB.05621-11
  • Shin SG, Han G, Lim J, Lee C, Hwang S. A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater. Water Res. 2010;44: 4838–4849. doi: 10.1016/j.watres.2010.07.019
  • McMahon KD, Zheng D, Stams AJM, Mackie RI, Raskin L. Microbial population dynamics during startup and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. Biotechnol Bioeng. 2004;7:823–834. doi: 10.1002/bit.20192
  • Ariesyady HD, Ito T, Okabe S. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res. 2007;41:1554–1568. doi: 10.1016/j.watres.2006.12.036
  • Ariesyady H, Ito T, Yoshiguchi K, Okabe S. Phylogenetic and functional diversity of propionate-oxidizing bacteria in an anaerobic digester sludge. Appl Microbiol Biotechnol. 2007;75:673–683. doi: 10.1007/s00253-007-0842-y
  • Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H. Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol. 2000;50:771–779. doi: 10.1099/00207713-50-2-771
  • Sekiguchi Y, Yamada T, Hanada S, Ohashi A, Harada H, Kamagata Y. Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain bacteria at the subphylum level. Int J Syst Evol Microbiol. 2003;53:1843–1851. doi: 10.1099/ijs.0.02699-0
  • Yamada T, Imachi H, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y. Bellilinea caldifistulae gen. nov., sp. nov and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol. 2007;57: 2299–2306. doi: 10.1099/ijs.0.65098-0
  • Yamada T, Sekiguchi Y. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi ‘subphylum i’ with natural and biotechnological relevance. Microbes Environ. 2009;24:205–216. doi: 10.1264/jsme2.ME09151S
  • Ganidi N, Tyrrel S, Cartmell E. Anaerobic digestion foaming causes – ‘a review’. Bioresour Technol. 2009;100: 5546–5554. doi: 10.1016/j.biortech.2009.06.024
  • Nielsen PH, Kragelund C, Seviour RJ, Nielsen JL. Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol Rev. 2009;33:969–998. doi: 10.1111/j.1574-6976.2009.00186.x
  • Rossetti S, Tomei MC, Nielsen PH, Tandoi V. Microthrix parvicella, a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. FEMS Microbiol Rev. 2005;29: 49–64. doi: 10.1016/j.femsre.2004.09.005
  • Seviour R, Kragelund C, Kong Y, Eales K, Nielsen J, Nielsen P. Ecophysiology of the actinobacteria in activated sludge systems. Antonie van Leeuwenhoek. 2008;94: 21–33. doi: 10.1007/s10482-008-9226-2
  • Shen F.-T, Huang H.-R, Arun AB, Lu H.-L, Lin T.-C, Rekha PD, Young C.-C. Detection of filamentous genus Gordonia in foam samples using genus-specific primers combined with PCRdenaturing gradient gel electrophoresis analysis. Can J Microbiol. 2007;53:768–774. doi: 10.1139/W07-038
  • Baena S, Fardeau ML, Labat M, Ollivier B, Thomas P, Garcia JL, Patel BKC. Aminobacterium colombiense gen. nov. sp. nov., an amino acid-degrading anaerobe isolated from anaerobic sludge. Anaerobe. 1998;4: 241–250. doi: 10.1006/anae.1998.0170
  • Diaz C, Baena S, Fardeau M.-L, Patel BKC. Aminiphilus circumscriptus gen. nov., sp. nov., an anaerobic amino-acid-degrading bacterium from an upflow anaerobic sludge reactor. Int J Syst Evol Microbiol. 2007;57: 1914–1918. doi: 10.1099/ijs.0.63614-0
  • Menes RJ, Muxí L. Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. Int J Syst Evol Microbiol. 2002;52:157–164.
  • Vartoukian SR, Palmer RM, Wade WG. The division ‘Synergistes’. Anaerobe. 2007;13:99–106. doi: 10.1016/j.anaerobe.2007.05.004
  • Wijekoon KC, Visvanathan C, Abeynayaka A. Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresour Technol. 2011;102:5353–5360. doi: 10.1016/j.biortech.2010.12.081
  • Krakat N, Schmidt S, Scherer P. Potential impact of process parameters upon the bacterial diversity in the mesophilic anaerobic digestion of beet silage. Bioresour Technol. 2011;102:5692–5701. doi: 10.1016/j.biortech.2011.02.108
  • Montero B, Garcia-Morales JL, Sales D, Solera R. Evolution of microorganisms in thermophilic-dry anaerobic digestion. Bioresour Technol. 2008;99:3233–3243. doi: 10.1016/j.biortech.2007.05.063
  • Lerm S, Kleybocker A, Miethling-Graff R, Alawi M, Kasina M, Liebrich M, Wurdemann H. Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload. Waste Manage. 2012;32:389–399. doi: 10.1016/j.wasman.2011.11.013
  • Karakashev D, Batstone DJ, Angelidaki I. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol. 2005;71:331–338. doi: 10.1128/AEM.71.1.331-338.2005
  • Karakashev D, Batstone DJ, Trably E, Angelidaki I. Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of methanosaetaceae. Appl Environ Microbiol. 2006;72:5138–5141. doi: 10.1128/AEM.00489-06
  • Griffin ME, McMahon KD, Mackie RI, Raskin L. Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol Bioeng. 1998;57:342–355. doi: 10.1002/(SICI)1097-0290(19980205)57:3<342::AID-BIT11>3.0.CO;2-I
  • Ros M, Franke-Whittle IH, Morales AB, Insam H, Ayuso M, Pascual JA. Archaeal community dynamics and abiotic characteristics in a mesophilic anaerobic co-digestion process treating fruit and vegetable processing waste sludge with chopped fresh artichoke waste. Bioresour Technol. 2013;136:1–7. doi: 10.1016/j.biortech.2013.02.058
  • Delbès C, Moletta R, Godon J.-J. Monitoring of activity dynamics of an anaerobic digester bacterial community using 16S rRNA polymerase chain reaction-single-strand conformation polymorphism analysis. Environ Microbiol. 2000;2:506–515. doi: 10.1046/j.1462-2920.2000.00132.x
  • Demirel B, Yenig uuml, n O. The effects of change in volatile fatty acid (VFA) composition on methanogenic upflow filter reactor (UFAF) performance. Environ Technol. 2002;23:1179–1187. doi: 10.1080/09593332308618336
  • Angelidaki I, Ahring BK. Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol. 1993;38:560–564.
  • Angenent LT, Sung S, Raskin L. Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Res. 2002;36:4648–4654. doi: 10.1016/S0043-1354(02)00199-9
  • Borja R, Sanchez E, Weiland P. Influence of ammonia concentration on thermophilic anaerobic digestion of cattle manure in upflow anaerobic sludge blanket (UASB) reactors. Process Biochem. 1996;31:477–483. doi: 10.1016/0032-9592(95)00099-2
  • Buenda IM, Fernández FJ, Villaseaor J, Rodraguez L. Feasibility of anaerobic co-digestion as a treatment option of meat industry wastes. Bioresour Technol. 2009;100: 1903–1909. doi: 10.1016/j.biortech.2008.10.013
  • Hansen KH, Angelidaki I, Ahring BKR. Anaerobic digestion of swine manure: inhibition by ammonia. Water Res. 1998;32:5–12. doi: 10.1016/S0043-1354(97)00201-7
  • Ripley LE, Boyle WC, Converse JC. Improved alkalimetric monitoring for anaerobic digestion of high-strength waste. J Water Pollut Control Fed. 1986;58:406.
  • Calli B, Mertoglu B, Inanc B, Yenigun O. Methanogenic diversity in anaerobic bioreactors under extremely high ammonia levels. Enzyme Microb Technol. 2005;37: 448–455. doi: 10.1016/j.enzmictec.2005.03.013
  • Xia Y, Massé DI, McAllister TA, Kong Y, Seviour R, Beaulieu C. Identity and diversity of archaeal communities during anaerobic co-digestion of chicken feathers and other animal wastes. Bioresour Technol. 2011;110: 111–119. doi: 10.1016/j.biortech.2012.01.107
  • Calli B, Mertoglu B, Inanc B, Yenigun O. Community changes during start-up in methanogenic bioreactors exposed to increasing levels of ammonia. Environ Technol. 2005;26:85–91. doi: 10.1080/09593332608618585
  • Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review. Bioresour Technol. 2008;99:4044–4064. doi: 10.1016/j.biortech.2007.01.057
  • Koster IW, Lettinga G. Anaerobic digestion at extreme ammonia concentrations. Biol Wastes. 1988;25:51–59. doi: 10.1016/0269-7483(88)90127-9
  • Callander IJ, Barford JP. Precipitation, chelation, and the availability of metals as nutrients in anaerobic digestion. I. Methodology. Biotechnol Bioeng. 1983;25:1947–1957. doi: 10.1002/bit.260250805
  • Callander IJ, Barford JP. Precipitation, chelation, and the availability of metals as nutrients in anaerobic digestion. II. Applications. Biotechnol Bioeng. 1983;25:1959–1972. doi: 10.1002/bit.260250806
  • Murray WD, Van Den Berg L. Effects of nickel, cobalt, and molybdenum on performance of methanogenic fixed-film reactors. Appl Environ Microbiol. 1981;42:502–505.
  • Hoban DJ, Van Den Berg L. Effect of iron on conversion of acetic acid to methane during methanogenic fermentations. J Appl Bacteriol. 1979;47:153–159. doi: 10.1111/j.1365-2672.1979.tb01179.x
  • Raju NR, Devi SS, Nand K. Influence of trace elements on biogas production from mango processing waste in 1.5 m3 KVIC digesters. Biotechnol Lett. 1991;13:461–464. doi: 10.1007/BF01031002
  • spinosa A, Rosas L, Ilangovan K, Noyola A. Effect of trace metals on the anaerobic degradation of volatile fatty acids in molasses stillage. Water Sci Technol. 1995;32: 121–129. doi: 10.1016/0273-1223(96)00146-1
  • Wilkie A, Goto M, Bordeaux FM, Smith PH. Enhancement of anaerobic methanogenesis from napiergrass by addition of micronutrients. Biomass. 1986;11:135–146. doi: 10.1016/0144-4565(86)90043-0
  • Jarvis Ã, Nordberg Ã, Jarlsvik T, Mathisen B, Svensson BH. Improvement of a grass-clover silage-fed biogas process by the addition of cobalt. Biomass Bioenergy. 1997;12: 453–460. doi: 10.1016/S0961-9534(97)00015-9
  • Zandvoort MH, van Hullebusch ED, Golubnic S, Gieteling J, Lens PNL. Induction of cobalt limitation in methanol-fed UASB reactors. J Chem Technol Biotechnol. 2006;81:1486–1495. doi: 10.1002/jctb.1559
  • Facchin V, Cavinato C, Fatone F, Pavan P, Cecchi F, Bolzonella D. Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: the influence of inoculum origin. Biochem Eng J. 2013;70:71–77. doi: 10.1016/j.bej.2012.10.004
  • Zhang Y, Yan L, Chi L, Long X, Mei Z, Zhang Z. Startup and operation of anaerobic EGSB reactor treating palm oil mill effluent. J Environ Sci. 2008;20:658–663. doi: 10.1016/S1001-0742(08)62109-9
  • Pobeheim H, Munk B, Johansson J, Guebitz GM. Influence of trace elements on methane formation from a synthetic model substrate for maize silage. Bioresour Technol. 2010;101:836–839. doi: 10.1016/j.biortech.2009.08.076
  • Kim M, Ahn Y.-H, Speece RE. Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res. 2002;36:4369–4385. doi: 10.1016/S0043-1354(02)00147-1
  • Jiang Y, Heaven S, Banks CJ. Strategies for stable anaerobic digestion of vegetable waste. Renew Energy. 2012;44: 206–214. doi: 10.1016/j.renene.2012.01.012
  • Climenhaga MA, Banks CJ. Anaerobic digestion of catering wastes: effect of micronutrients and solids retention time. Water Sci Technol. 2008;57(5):687–692. doi: 10.2166/wst.2008.092
  • Zhang L, Jahng D. Long-term anaerobic digestion of food waste stabilized by trace elements. Waste Manage. 2012;32:1509–1515. doi: 10.1016/j.wasman.2012.03.015
  • Banks CJ, Zhang Y, Jiang Y, Heaven S. Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour Technol. 2012;104:127–135. doi: 10.1016/j.biortech.2011.10.068
  • Takashima M, Speece RE, Parkin GF. Mineral requirements for methane fermentation. Crit Rev Environ Control. 1990;19:465–479. doi: 10.1080/10643389009388378
  • Demirel B, Scherer P. Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy. 2011;35:992–998. doi: 10.1016/j.biombioe.2010.12.022
  • Fermoso FG, Collins G, Bartacek J, O'Flaherty V, Lens P. Acidification of methanol-fed anaerobic granular sludge bioreactors by cobalt deprivation: induction and microbial community dynamics. Biotechnol Bioeng. 2008;99:49–58. doi: 10.1002/bit.21528
  • Deflaun MF, Steffan R. Bioaugmentation. In: Bitton G, editor. Encyclopedia of environmental microbiology. New York: Wiley-Interscience; 2002. p. 434–442.
  • Rittmann BE, Whiteman R. Bioaugmentation: a coming of age. Water Qual Int. 1994;1:16.
  • El Fantroussi S, Agathos SN. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol. 2005;8:268–275. doi: 10.1016/j.mib.2005.04.011
  • Gentry TJ, Rensing C, Pepper IL. New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol. 2004;34:447–494. doi: 10.1080/10643380490452362
  • Vogel TM. Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol. 1996;7:311–316. doi: 10.1016/S0958-1669(96)80036-X
  • Schauer-Gimenez AE, Zitomer DH, Maki JS, Struble CA. Bioaugmentation for improved recovery of anaerobic digesters after toxicant exposure. Water Res. 2010;44:3555–3564. doi: 10.1016/j.watres.2010.03.037
  • Satoh H, Okabe S, Yamaguchi Y, Watanabe Y. Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode. Water Res. 2003;37:2206–2216. doi: 10.1016/S0043-1354(02)00617-6
  • Limbergen HV, Top EM, Verstraete W. Bioaugmentation in activated sludge: current features and future perspectives. Appl Microbiol Biotechnol. 1998;50:16–23. doi: 10.1007/s002530051250
  • Nancharaiah YV, Joshi HM, Hausner M, Venugopalan VP. Bioaugmentation of aerobic microbial granules with Pseudomonas putida carrying TOL plasmid. Chemosphere. 2008;71:30–35. doi: 10.1016/j.chemosphere.2007.10.062
  • Westerholm M, Leven L, Schnuer A. Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia. Appl Environ Microbiol. 2012;78:7619–7625. doi: 10.1128/AEM.01637-12
  • Savant D, Ranade D. Application of Methanobrevibacter acididurans in anaerobic digestion. Water Sci Technol. 2004;50:109–114.
  • Savant DV, Shouche YS, Prakash S, Ranade DR. Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int J Syst Evol Microbiol. 2002;52:1081–1087. doi: 10.1099/ijs.0.01903-0
  • Nielsen HB, Mladenovska Z, Ahring BK. Bioaugmentation of a two-stage thermophilic (C) anaerobic digestion concept for improvement of the methane yield from cattle manure. Biotechnol Bioeng. 2007;97:1638–1643. doi: 10.1002/bit.21342
  • Costa JC, Barbosa SG, Alves MM, Sousa DZ. Thermochemical pre- and biological co-treatments to improve hydrolysis and methane production from poultry litter. Bioresour Technol. 2012;111:141–147. doi: 10.1016/j.biortech.2012.02.047
  • Cavaleiro AJ, Sousa DZ, Alves MM. Methane production from oleate: assessing the bioaugmentation potential of Syntrophomonas zehnderi. Water Res. 2010;44: 4940–4947. doi: 10.1016/j.watres.2010.07.039
  • Cirne DG, Björnsson L, Alves M, Mattiasson B. Effects of bioaugmentation by an anaerobic lipolytic bacterium on anaerobic digestion of lipid-rich waste. J Chem Technol Biotechnol. 2006;81:1745–1752. doi: 10.1002/jctb.1597
  • Tale VP, Maki JS, Struble CA, Zitomer DH. Metha- nogen community structure–activity relationship and bioaugmentation of overloaded anaerobic digesters. Water Res. 2011;45: 5249–5256. doi: 10.1016/j.watres.2011.07.035
  • Saravanane R, Murthy DVS, Krishnaiah K. Bioaugmentation and anaerobic treatment of pharmaceutical effluent in fluidized bed reactor. J Environ Sci Health A. 2001;36: 779–791. doi: 10.1081/ESE-100103760
  • Hashsham SA, Fernández AS, Dollhopf SL, Dazzo FB, Hickey RF, Tiedje JM, Criddle CS. Parallel processing of substrate correlates with greater functional stability in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol. 2000;66:4050–4057. doi: 10.1128/AEM.66.9.4050-4057.2000
  • Briones A, Raskin L. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr Opin Biotechnol. 2003;14:270–276. doi: 10.1016/S0958-1669(03)00065-X
  • Palatsi J, Laureni M, Andres MV, Flotats X, Nielsen HB, Angelidaki I. Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors. Bioresour Technol. 2009;100:4588–4596. doi: 10.1016/j.biortech.2009.04.046
  • Bjerketorp J, Ng Tze Chiang A, Hjort K, Rosenquist M, Liu W.-T, Jansson JK. Rapid lab-on-a-chip profiling of human gut bacteria. J Microbiol Methods. 2008;72: 82–90. doi: 10.1016/j.mimet.2007.10.011
  • Franke-Whittle IH, Goberna M, Pfister V, Insam H. Design and development of the ANAEROCHIP microarray for investigation of methanogenic communities. J Microbiol Methods. 2009;79:279–288. doi: 10.1016/j.mimet.2009.09.017
  • Sundh I, Carlsson H, Nordberg Ãk, Hansson M, Mathisen B. Effects of glucose overloading on microbial community structure and biogas production in a laboratory-scale anaerobic digester. Bioresour Technol. 2003;89:237–243. doi: 10.1016/S0960-8524(03)00075-0
  • Frostegård A, Tunlid A, Baath E. Use and misuse of PLFA measurements in soils. Soil Biol Biochem. 2011;43: 1621–1625. doi: 10.1016/j.soilbio.2010.11.021
  • Gattinger A, Günthner A, Schloter M, Munch JC. Characterisation of Archaea in soils by polar lipid analysis. Acta Biotechnol. 2003;23:21–28. doi: 10.1002/abio.200390003
  • Radl V, Gattinger A, Chronáková A, Nemcová A, Cuhel J, Simek M, Munch JC, Schloter M, Elhottová D. Effects of cattle husbandry on abundance and activity of methanogenic archaea in upland soils. ISME J. 2007;1:443–452. doi: 10.1038/ismej.2007.60
  • Oravecz O, Elhottova D, Kristufek V, Sustr V, Frouz J, Triska J, Marialigeti K. Application of ARDRA and PLFA analysis in characterizing the bacterial communities of the food, gut and excrement of saprophagous larvae of Penthetria holosericea (Diptera: Bibionidae): a pilot study. Folia Microbiol. 2004;49:83–93.
  • Schwarzenauer T, Illmer P. PLFA profiles for microbial community monitoring in anaerobic digestion. Folia Microbiol. 2012;57:331–333. doi: 10.1007/s12223-012-0136-3
  • Buyer JS, Sasser M. High throughput phospholipid fatty acid analysis of soils. Appl Soil Ecol. 2012;61:127–130. doi: 10.1016/j.apsoil.2012.06.005
  • McMahon KD, Martin HG, Hugenholtz P. Integrating ecology into biotechnology. Curr Opin Biotechnol. 2007;18:287–292. doi: 10.1016/j.copbio.2007.04.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.