265
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge

, , , , &
Pages 115-123 | Received 26 Feb 2014, Accepted 19 Jun 2014, Published online: 15 Jul 2014

References

  • National Research Council. Alternative for groundwater clean-up. Washington, DC: The National Academy Press; 1994.
  • ATSDR. Division of toxicology ToxFAQsTM. Atlanta, GA: Agency for Toxic Substances and Disease Registry; 2003.
  • Lim M, Son Y, Yang J, Khim J. Addition of chlorinated compounds in the sonochemical degradation of 2-chlorophenol. Jpn J Appl Phys. 2008;47:4123–4126. doi: 10.1143/JJAP.47.4123
  • Dalton H, Stirling DJ. Co-metabolism [and discussion]. Proc R Soc B: Biol Sci. 1982;297:481–496.
  • McCarty PL, Goltz MN, Hopkins GD, Dolan ME, Allan JP, Kawakami BT, Carrothers T. Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environ Sci Technol. 1998;32:88–100. doi: 10.1021/es970322b
  • Rittmann BE, McCarty PL. Environmental biotechnology: principles and applications. New York: McGraw-Hill; 2001.
  • Chen YM, Lin TF, Huang C, Lin JC. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chemosphere. 2008;72:1671–1680. doi: 10.1016/j.chemosphere.2008.05.035
  • Elango V, Kurtz HD, Freedman DL. Aerobic cometabolism of trichloroethene and cis-dichloroethene with benzene and chlorinated benzenes as growth substrates. Chemosphere. 2011;84:247–253. doi: 10.1016/j.chemosphere.2011.04.007
  • Lu CJ, Lee C, Chung MS. The comparison of trichloroethylene removal rates by methane- and aromatic-utilizing microorganisms. Water Sci Technol. 1998;38:19–24. doi: 10.1016/S0273-1223(98)00628-3
  • Chang HL, Alvarez-Cohen L. Model for the cometabolic biodegradation of chlorinated organics. Environ Sci Technol. 1995;29:2357–2367. doi: 10.1021/es00009a031
  • Kim Y, Arp DJ, Semprini L. Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed culture. Biotechnol Bioeng. 2002;80:498–508. doi: 10.1002/bit.10397
  • Suttinun O, Luepromchai E, Müller R. Cometabolism of trichloroethylene: concepts, limitations and available strategies for sustained biodegradation. Rev Environ Sci Bio/Technol. 2013;12:99–114. doi: 10.1007/s11157-012-9291-x
  • Pant P, Pant S. A review: advances in microbial remediation of trichloroethylene (TCE). J Environ Sci China. 2010;22:116–126. doi: 10.1016/S1001-0742(09)60082-6
  • Kim JH, Oh KK, Lee ST, Kim SW, Hong SI. Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed bed reactor. Process Biochem. 2002;37:1367–1373. doi: 10.1016/S0032-9592(02)00007-9
  • Harker AR, Kim Y. Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134. Appl Environ Microbiol. 1990;56:1179–1181.
  • Bailey JE, Ollis DF. Biochemical engineering fundamentals. New York: McGraw-Hill; 1977.
  • Chang HL, Alvarez-Cohen L. Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotechnol Bioeng. 1995;45:440–449. doi: 10.1002/bit.260450509
  • Alvarez-Cohen L, McCarty PL. A cometabolic biotransformation model for halogenated aliphatic compounds exhibiting product toxicity. Environ Sci Technol. 1991;25: 1381–1386. doi: 10.1021/es00020a003
  • Dolfing J, van de Wijingaard AJ, Janssen DB. Microbiological aspects of the removal of chlorinated hydrocarbons from air. Biodegradation. 1993;4:261–282. doi: 10.1007/BF00695974
  • Zhang Y, Tay JH. Co-metabolic degradation activities of trichloroethylene by phenol-grown aerobic granules. J Biotechnol. 2012;162:274–282. doi: 10.1016/j.jbiotec.2012.09.012
  • Verce MF, Ulrich RL, Freedman DL. Characterization of an isolate that uses vinyl chloride as a growth substrate under aerobic conditions. Appl Environ Microbiol. 2000;66:3535–3542. doi: 10.1128/AEM.66.8.3535-3542.2000
  • Sahinkaya E, Dilek FB. Biodegradation of 4-chlorophenol by acclimated and unacclimated activated sludge – evaluation of biokinetic coefficients. Environ Res. 2005;99:243–252. doi: 10.1016/j.envres.2004.11.005
  • Jechorek M, Wendlandt KD, Beck M. Cometabolic degradation of chlorinated aromatic compounds. J Biotechnol. 2003;102:93–98. doi: 10.1016/S0168-1656(03)00005-1
  • Hopkins GD, McCarty PL. Field evaluation of in situ aerobic cometabolism of trichloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates. Environ Sci Technol. 1995;29:1628–1637. doi: 10.1021/es00006a029
  • Inguva S, Shreve GS. Biodegradation kinetics of trichloroe-thylene and 1,2-dichloroethane by Burkholderia (Pseudomonas) cepacia PRI31 and Xanthobacter autotrophicus GJ10. Int Biodeterior Biodegrad. 1999;43:57–61.
  • Tay JH, Jiang HL, Tay STL. High-rate biodegradation of phenol by aerobically grown microbial granules. J Environ Eng. 2004;130:1115–1423.
  • Folsom BR, Chapman P, Pritchard P. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl Environ Microbiol. 1990;56:1279–1285.
  • Futamata H, Harayama S, Watanabe K. Diversity in kinetics of trichloroethylene-degrading activities exhibited by phenol-degrading bacteria. Appl Microbiol Biotechnol. 2001;55:248–253. doi: 10.1007/s002530000500
  • Landa AS, Sipkema EM, Weijma J, Beenackers A, Dolfing J, Janssen DB. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. Appl Environ Microbiol. 1994;60:3368–3374.
  • Segar RL. Endogenous cometabolism of chlorinated ethenes by biofilms grown on phenol. Austin: University of Texas at Austin; 1994.
  • Segar RL Jr , De Wys SL, Speitel GE. Jr, Sustained trichloroethylene cometabolism by phenol-degrading bacteria in sequencing biofilm reactors. Water Environ Res. 1995;67:764–774. doi: 10.2175/106143095X131637
  • Luo W, D'Angelo EM, Coyne MS. Organic carbon effects on aerobic polychlorinated biphenyl removal and bacterial community composition in soils and sediments. Chemosphere. 2008;70:364–373. doi: 10.1016/j.chemosphere.2007.07.022
  • Jayamani I, Manzella MP, Cupples AM. RDX degradation potential in soils previously unexposed to RDX and the identification of RDX-degrading species in one agricultural soil using stable isotope probing. Water Air Soil Pollut. 2013;224:1–15. doi: 10.1007/s11270-013-1745-4
  • Frascari D, Cappelletti M, Fedi S, Zannoni D, Nocentini M, Pinelli D. 1,1,2,2-Tetrachloroethane aerobic cometabolic biodegradation in slurry and soil-free bioreactors: a kinetic study. Biochem Eng J. 2010;52:55–64. doi: 10.1016/j.bej.2010.07.004
  • Macbeth TW, Cummings DE, Spring S, Petzke LM, Sorenson KS. Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture. Appl Environ Microbiol. 2004;70:7329–7341. doi: 10.1128/AEM.70.12.7329-7341.2004
  • Juretschko S, Timemermann G, Schmid M, Schleifer KH, Pommerening-Roser A, Koops HP, Wagner M. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant population. Appl Environ Microbiol. 1998;64:3042–3051.
  • Daims H, Nielsen P, Nielsen J, Jureteschko S, Wagner M. Novel Nitrospira-like bacteria as dominant nitrite-oxidizers in biofilms from wastewater treatment plants: diversity and in situ physiology. Water Sci Technol. 2000;41:85–90.
  • Oliveira L, Costa R, Sakamoto I, Duarte I, Silva E, Varesche M. Las degradation in a fluidized bed reactor and phylogenetic characterization of the biofilm. Braz J Chem Eng. 2013;30:521–529. doi: 10.1590/S0104-66322013000300010
  • Cao JW, Dong CM, Cao HB, Shao ZZ. Isolation of phenol-degrading bacteria from coking wastewater and their degradation rate. Huan Jing Ke Xue. 2011;32:560–566.
  • Dosta J, Nieto J, Vila J, Grifoll M, Mata-Alvarez J. Phenol removal from hypersaline wastewaters in a membrane biological reactors (MBR): operation and microbiological characterisation. Bioresour Technol. 2011;102: 4013–4020. doi: 10.1016/j.biortech.2010.11.123
  • Alfreider A, Vogt C. Bacterial diversity and aerobic biodegradation potential in a BTEX-contaminated aquifer. Water Air Soil Pollut. 2007;183:415–426. doi: 10.1007/s11270-007-9390-4
  • Liang L, Goel R, McPherson B. Integrated treatment of produced water by electrolytic and biological methods. Presentation on D.O.E. Project Review Meeting; 2008 May 13; Salt Lake City, UT.
  • Frascari D, Bucchi G, Doria F, Rosato A, Tavanaie N, Salviulo R, Ciavaelli R, Pinelli D, Fraraccio S, Zanaroli G. Development of an attached-growth process for the on-site bioremediation of an aquifer polluted by chlorinated solvents. Biodegradation. 2014;25:337–350. doi: 10.1007/s10532-013-9664-z
  • Regan K, Crawford R. Characterization of Clostridium bifermentans and its biotransformation of 2,4,6-trinitrotoluene (TNT) and 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX). Biotechnol Lett. 1994;16:1081–1086. doi: 10.1007/BF01022407
  • Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J. Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun. 2004;316:816–821. doi: 10.1016/j.bbrc.2004.02.120
  • Sherburne LA, Shrout JD, Alvarez PJ. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium aludosum. Biodegradation. 2005;16:539–547. doi: 10.1007/s10532-004-6945-6
  • Kwon MJ, Finneran KT. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) biodegradation kinetics amongst several Fe(III)-reducing genera. Soil Sediment Contam. 2008;17: 189–203. doi: 10.1080/15320380701873132
  • Singh R, Soni P, Kumar P, Purohit S, Singh A. Biodegradation of high explosive production effluent containing RDX and HMX by denitrifying bacteria. World J Microbiol Biotechnol. 2009;25:269–275. doi: 10.1007/s11274-008-9889-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.