82
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Efficiency and chemical recycling capability of magnetite-rich clay towards Eriochrome Black T remediation in the fixed-bed system

, , , &
Pages 281-292 | Received 19 Oct 2013, Accepted 10 Jul 2014, Published online: 14 Aug 2014

References

  • Chiou MS, Ho P, Ho Y, Li HY. Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes Pigments. 2004;60:69–84. doi: 10.1016/S0143-7208(03)00140-2
  • Gong R, Ding Y, Li M, Yang C, Liu H, Sun Y. Chitosan intercalated montmorillonite: preparation, characterization and cationic dye adsorption. Dyes Pigments. 2005;64:187–192. doi: 10.1016/j.dyepig.2004.05.005
  • Sepulveda LA, Santana CC. Effect of solution temperature, pH and ionic strength on dye adsorption onto magellanic peat. Environ Technol. 2013;34:967–977. doi: 10.1080/09593330.2012.724251
  • Marcos JS, Villalva-Coyote R, Díaz-Nava MC. Sorption and desorption of remazol yellow by a Fe-zeolitic tuff. J Mex Chem Soc. 2010;54:59–68.
  • Easton JR. The dye-makers view. In: Cooper P, editor. Colour in dyehouse effluent. England: Society of Dyers and Colourists; 1995. p. 9–21.
  • Banat IM, Nigam P, Singh D, Marchant R. Microbial decolorization of textiledye-containing effluents: a review. Bioresour Technol. 1996;58:217–227. doi: 10.1016/S0960-8524(96)00113-7
  • Kasiri MB, Khataee AR. Removal of organic dyes by UV/H2O2 process: modelling and optimization. Environ Technol. 2012;33:1417–1425. doi: 10.1080/09593330.2011.630425
  • Rodrigues CSD, Boaventura RAR, Madeira LM. Technical and economic feasibility of polyester dyeing wastewater treatment by coagulation/flocculation and Fenton's oxidation. Environ Technol. 2014;35:1307–1319. doi: 10.1080/09593330.2013.866983
  • Ramakrishna KR, Viraraghavan T. Dye removal using low cost adsorbents. Water Sci Technol. 1997;36:189–196. doi: 10.1016/S0273-1223(97)00387-9
  • Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol. 2001;77:247–255. doi: 10.1016/S0960-8524(00)00080-8
  • Harris RG, Wells JD, Johnson BB. Selective adsorption of dyes and other organic molecules to kaolinite and oxide surfaces. Colloids Surf A Physicochem Eng Asp. 2001;180:131–140. doi: 10.1016/S0927-7757(00)00747-0
  • Ho YS, Chiang CC, Hsu YC. Sorption kinetics for dye removal from aqueous solution using activated clay. Sci Technol. 2001;36:2473–2488. doi: 10.1081/SS-100106104
  • Djomgoue P, Siewe S, Djoufac E, Kenfack P, Njopwouo D. Surface modification of Cameroonian magnetite rich clay with Eriochrome Black T. Application for adsorption of nickel in aqueous solution. Appl Surf Sci. 2012;258:7470–7479.
  • Ferro-Garcia MA, Rivera-Utrilla J, Bautista-Toledo I, Moreno-Castilla C. Chemical and thermal regeneration of an activated carbon saturated with chlorophenols. C J Chem Technol Biotechnol. 1996;67:183–189. doi: 10.1002/(SICI)1097-4660(199610)67:2<183::AID-JCTB550>3.0.CO;2-K
  • Rivera-Utrilla J, Sanchez C. Degradation and removal of naphthalenesulphonic acids by means of adsorption and ozonation catalyzed by activated carbon in water. Water Resour Res. 2003;39:1232–1238. doi: 10.1029/2002WR001596
  • Woumfo ED, Djomgoue P, Tamfuh PA, Bitom D, Figueras F, Njopwouo D. Clays from the Bafang region (West Cameroon): properties and potential application as decolorizing agent of river water. Appl Clay Sci. 2010;50:322–329. doi: 10.1016/j.clay.2010.08.017
  • Han RP, Wang Y, Zha X, Wang YF, Xie FL, Cheng JM, Tang MS. Adsorption of methylene blue by phoenix tree leaf powder in a fixed-bed column: experiments and prediction of breakthrough curves. Desalination. 2009;245:284–297. doi: 10.1016/j.desal.2008.07.013
  • Uddin MT, Rukanuzzaman M, Khan MR, Islam MA. Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: a fixed-bed column study. J Environ Manage. 2009;90:3443–3450. doi: 10.1016/j.jenvman.2009.05.030
  • Goel J, Kachrvehi K, Rajagopal C, Garg VK. Removal of lead (II) by adsorption using treated granular activate carbon: batch and column studies. J Hazard Mater. 2005;125:211–220. doi: 10.1016/j.jhazmat.2005.05.032
  • Oguz E, Ersoy M. Removal of Cu2+ from aqueous solution by adsorption in a fixed bed column and neural network modeling. Chem Eng J. 2010;164:56–62. doi: 10.1016/j.cej.2010.08.016
  • Thomas HC. Heterogeneous ion exchange in a flowing system. J Am Chem Soc. 1944;66:1466–1664.
  • Han R, Wang Y, Yu W, Zou W, Shi J, Lui H. Biosorption of methylene blue from aqueous solution by rice husk in a fixed bed column. J Hazard Mater. 2006;139:513–518.
  • Boharts G, Adam EN. Some aspects of the behaviour of charcoal with respect to chlorine. J Am Chem Soc. 1920;42:523–544. doi: 10.1021/ja01448a018
  • Kratochvil D, Volesky B. Multicomponent biosorption in fixed beds. Water Res. 2000;34:3186–3196. doi: 10.1016/S0043-1354(00)00083-X
  • Hutchins R. Newmethods simplifies design of activated carbon systems, Water Bed Depth Service Time analysis. J Chem Eng Lond. 1973;81:133–138.
  • Vijayaraghavan K, Jegan J, Palanivelu K, Velan M. Batch and column removal of copper from aqueous solution using a brow marine alga Turbinaria ornate. Chem Eng J. 2005;106:177–184. doi: 10.1016/j.cej.2004.12.039
  • Othman MZ, Roddick FA, Snow R. Removal of dissolved organic compounds in a fixed bed column: evaluation of flow-tank coal adsorbent. Water Res. 2001;35:2943–2949. doi: 10.1016/S0043-1354(00)00578-9
  • Unuabonah EI, Olu-Owolabi BI, Fasuyi EI, Adebowale KO. Modeling of fixed-bed column studies for the adsorption of cadmium onto novel Polymer–clay composite adsorbent. J Hazard Mater. 2010;179:415–423. doi: 10.1016/j.jhazmat.2010.03.020
  • Yoon YH, Nelson JH. Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service life. Am Ind Hyg Assoc J. 1984;45:509–516. doi: 10.1080/15298668491400197
  • McKay G, Bino MJ. Fixed-bed adsorption for the removal of pollutants from water. Environ Pollut. 1990;66:33–53. doi: 10.1016/0269-7491(90)90197-K
  • Malkoc E, Nuhoglu Y. Removal of Ni(II) ions from aqueous solutions using waste of tea factory: adsorption on a fixed-bed column. J Hazard Mater B. 2006;135:328–336. doi: 10.1016/j.jhazmat.2005.11.070
  • Kundu S, Gupta AK. As(III) removal from aqueous medium in fixed bed using iron oxide-coated cement (IOCC): experimental and modeling studies. Chem Eng J. 2007;129:123–131. doi: 10.1016/j.cej.2006.10.014
  • Singh TS, Pant KK. Experimental and modelling studies on fixed bed adsorption of As(III) ions from aqueous solution. Sep Purif Technol. 2006;48:288–296. doi: 10.1016/j.seppur.2005.07.035
  • Brauch V, Schlunder EU. The scale-up of activated carbon columns for water purification, based on results from batch tests. Chem Eng Sci. 1975;30:539–548. doi: 10.1016/0009-2509(75)80024-8
  • Chu KH. Improved fixed-bed models for metal biosorption. Chem Eng J. 2004;97:233–239. doi: 10.1016/S1385-8947(03)00214-6
  • Han R, Wang Y, Zhao X, Wang Y, Xie F, Cheng J, Tang M. Adsorption of methylene blue by phoenix tree leaf powder in a fixed bed column: experiments and prediction of breakthrough curves. Desalination. 2009;245:284–297. doi: 10.1016/j.desal.2008.07.013
  • Zulfadhly Z, Mashitah MD, Bhatia S. Heavy metals removal in fixed-bed column by the macro fungus Pycnoporus sanguineus. Environ Pollut. 2001;112:463–470. doi: 10.1016/S0269-7491(00)00136-6
  • Al-Degs YS, Khraisheh MAM, Allen SJ, Ahmad MN. Adsorption characteristics of reactive dyes in columns of activated carbon. J Hazard Mater. 2009;165:944–949. doi: 10.1016/j.jhazmat.2008.10.081
  • Gupta VK, Srivastava SK, Tyagi R. Design parameters for the treatment of phenolic wastes by carbon columns (obtained from fertilizer waste material). Water Res. 2000;34:1543–1550. doi: 10.1016/S0043-1354(99)00322-X
  • Albadarin AB, Mangwandi C, Al-Muhtaseb AH, Walker GM, Allen SJ, Ahmad MNM. Modelling and fixed bed column adsorption of Cr(VI) onto orthophosphoric acid-activated lignin. Chinese J Chem Eng. 2012;20:469–477.
  • Al-Ghouti MA, Khraisheh MAM, Ahmad MN, Allen SJ. Microcolumn studies of dye adsorption onto manganese oxides modified diatomite. J Hazard Mater. 2007;146:316–327. doi: 10.1016/j.jhazmat.2006.12.024
  • Özcan AS, Özcan A. Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite. J Colloid Interf Sci. 2004;276:39–46. doi: 10.1016/j.jcis.2004.03.043
  • Netpradit S, Thiravetyan P, Towprayoon S. Evaluation of metal hydroxide sludge for reactive dye adsorption in a fixed-bed column system. Water Res. 2004;38:71–78. doi: 10.1016/j.watres.2003.09.007
  • Ahmad AA, Hameed BH. Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. J Hazard Mater. 2010;175:298–303. doi: 10.1016/j.jhazmat.2009.10.003
  • Patel H, Vashi RT. Fixed bed column adsorption of ACID Yellow 17 dye onto Tamarind Seed Powder. Can J Chem Eng. 2012;90:180–185. doi: 10.1139/v11-143
  • Tan IAW, Ahmad AL, Hameed BH. Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination. 2008;225:13–28. doi: 10.1016/j.desal.2007.07.005
  • Lin S, Juang R, Wang Y. Adsorption of acid dye from water onto pristine and acid-activated clays in fixed beds. J Hazard Mater B. 2004;113:195–200. doi: 10.1016/j.jhazmat.2004.06.028
  • Blanco-Flores A, Colín-Cruz A, Gutiérrez-Segura E, Sanchez-Mendieta V, Solís-Casados DA, Garrudo-Guirado MA, Batista-Gonzalez R. Efficient removal of crystal violet dye from aqueous solutions by vitreous tuff mineral. Environ Technol. 2014;35:1508–1519. doi: 10.1080/09593330.2013.871352
  • Resmi G, Thampi SG, Chandrakaran S. Removal of lead from wastewater by adsorption using acid-activated clay. Environ Technol. 2012;33:291–297. doi: 10.1080/09593330.2011.572917
  • Barka N, Abdennouri M, El Makhfouk M. Removal of Methylene Blue and Eriochrome Black T from aqueous solutions by biosorption on Scolymus hispanicus L.: kinetics, equilibrium and thermodynamics. J Taiwan Inst Chem E. 2011;42:320–326. doi: 10.1016/j.jtice.2010.07.004
  • Iqbal MJ, Ashiq MN. Adsorption of dyes from aqueous solutions on activated charcoal. J Hazard Mater B. 2007;139:57–66. doi: 10.1016/j.jhazmat.2006.06.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.