474
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of the formation of oxidants and by-products using Pt/Ti, RuO2/Ti, and IrO2/Ti electrodes in the electrochemical process

, , , , &
Pages 317-326 | Received 01 Apr 2014, Accepted 15 Jul 2014, Published online: 19 Aug 2014

References

  • Comninellis Ch, Pulgarin C. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. J Appl Electrochem. 1993;23:108–112. doi: 10.1007/BF00246946
  • Grimm J, Bessarabov D, Sanderson R. Review of electro-assisted methods for water purification. Desalination. 1998;115:285–294. doi: 10.1016/S0011-9164(98)00047-2
  • Saracco G, Solarino L, Aigotti R, Specchia V, Maja M. Electrochemical oxidation of organic pollutants at low electrolyte concentrations. Electrochim Acta. 2000;46:373–380. doi: 10.1016/S0013-4686(00)00594-6
  • Govindaraj M, Muthukumar M, Bhaskar Raju G. Electrochemical oxidation of tannic acid contaminated wastewater by RuO2/IrO2/TaO2-coated titanium and graphite anodes. Environ Technol. 2010;31:1613–1622. doi: 10.1080/09593330.2010.482147
  • Martinez-Huitle CA, Brillas E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B: Environ. 2009;87:105–145. doi: 10.1016/j.apcatb.2008.09.017
  • Casteel MJ, Sobsey MD, Arrowood MJ. Inactivation of Cryptosporidium parvum oocysts and other microbes in water and wastewater by electrochemically generated mixed oxidants. Water Sci Technol. 2000;41:127–134.
  • Yoon Y, Jung Y, Kwon M, Cho E, Kang JW. Alternative electrode materials and ceramic filter minimize disinfection byproducts in point-of-use electrochemical water treatment. Environ Eng Sci. 2013;30(12):742–749. doi: 10.1089/ees.2013.0218
  • Chen G. Electrochemical technologies in wastewater treatment. Sep Purif Technol. 2004;38:11–41. doi: 10.1016/j.seppur.2003.10.006
  • Drees KP, Abbaszadegan M, Maier RM. Comparative electrochemical inactivation of bacteria and bacteriophage. Water Res. 2003;37:2291–2300. doi: 10.1016/S0043-1354(03)00009-5
  • Matsunaga T, Naksono S, Takamuku T, Burgess JG, Nakamura N, Sode K. Disinfection of drinking water by using a novel electrochemical reactor employing carbon-cloth electrodes. Appl Environ Microbiol. 1992;58:686–689.
  • Patermarakis G, Fountoukidis E. Disinfection of water by electrochemical treatment. Water Res. 1990;24:1491–1496. doi: 10.1016/0043-1354(90)90083-I
  • Venczel LV, Arrowood M, Hurd M, Sobsey MD. Inactivation of Cryptosporidium parvum oocysts and Clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine. Appl Environ Microbiol. 1997;63:1598–1601.
  • Cho J, Choi H, Kim IS, Amy G. Chemical aspects and byproducts of electrolyser. Water Sci Technol: Water Suppl. 2001;1:159–167.
  • Qin GF, Li ZY, Chen XD, Russell AB. An experimental study of an NaClO generator for anti-microbial applications in the food industry. J Food Eng. 2002;54:111–118. doi: 10.1016/S0260-8774(01)00191-1
  • Panizza M, Cerisola G. Direct and mediated anodic oxidation of organic pollutants. Chem Rev. 2009;109(12):6541–6569. doi: 10.1021/cr9001319
  • Hoseinieh SM, Ashrafizadeh F, Maddahi MH. A comparative investigation of the corrosion behavior of RuO2–IrO2–TiO2 coated titanium anodes in chloride solution. J Electrochem Soc. 2010;157(4):E50–E56. doi: 10.1149/1.3294569
  • Diao HF, Li XY, Gu JD, Shi HC, Xie ZM. Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction. Process Biochem. 2004;39:1421–1426. doi: 10.1016/S0032-9592(03)00274-7
  • Hend Galal-Gorchev. Chlorine in water disinfection. Pure Appl Chem. 1996;68:1731–1735.
  • Krasner SW, McGuire MJ, Jacangelo JG, Patania NL, Reagan KM, Marco AE. Occurrence of disinfection by-products in US drinking water. J Am Water Works Ass. 1989;81(8):41–53.
  • Adin A, Katzhendler J, Alkaslassy D, Rav-Acha Ch. Trihalomethane formation in chlorinated drinking water: a kinetic model. Water Res. 1991;25:797–805. doi: 10.1016/0043-1354(91)90159-N
  • Kimbrough DE, Suffet IH. Electrochemical removal of bromide and reduction of THM formation potential in drinking water. Water Res. 2002;36:4902–4906. doi: 10.1016/S0043-1354(02)00210-5
  • Jung YJ, Oh BS, Kang JW, Page MA, Phillips MJ, Marinas BJ. Control of disinfection and halogenated disinfection byproducts by the electrochemical process. Water Sci Technol. 2007;55(12):213–219. doi: 10.2166/wst.2007.409
  • Urbansky ET, Schock MR. Issues in managing the risks associated with perchlorate in drinking water. J Environ Manage. 1999;56:79–95. doi: 10.1006/jema.1999.0274
  • Srinivasan R, Sorial GA. Treatment of perchlorate in drinking water: a critical review. Sep Purif Technol. 2009;69:7–21. doi: 10.1016/j.seppur.2009.06.025
  • Siddiqui MS. Chlorine-ozone interactions: formation of chlorate. Water Res. 1996;30(9):2160–2170. doi: 10.1016/0043-1354(96)00071-1
  • Richardson SD, Plewa MJ, Wagner ED, Schoeny R, DeMarini DM. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection byproducts in drinking water: a review and roadmap for research. Mutat Res. 2007;636:178–242. doi: 10.1016/j.mrrev.2007.09.001
  • WHO. Guidelines for drinking water quality. 3rd ed. Geneva, Switzerland: WHO; 2008.
  • NRC. Health implications of perchlorate ingestion. National research council of the national academies. Washington, DC: National Academies Press; 2005.
  • Martinez-Huitle CA, Brillas E. Electrochemical alternatives for drinking water disinfection. Angew Chem. 2008;47(11):1998–2005. doi: 10.1002/anie.200703621
  • Jeong J, Kim C, Yoon J. The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes. Water Res. 2009;43:895–901. doi: 10.1016/j.watres.2008.11.033
  • Bergmann MEH, Rollin J. Product and by-product formation in laboratory studies on disinfection electrolysis of water using boron-doped diamond anodes. Catal Today. 2007;124:198–203. doi: 10.1016/j.cattod.2007.03.038
  • Jung YJ, Baek KW, Oh BS, Kang JW. An investigation of the formation of chlorate and perchlorate during electrolysis using Pt/Ti electrodes: the effects of pH and reactive oxygen species and the results of kinetic studies. Water Res. 2010;44:5345–5355. doi: 10.1016/j.watres.2010.06.029
  • Hwang TM, Oh BS, Yoon Y, Kwon M, Kang JW. Continuous determination of hydrogen peroxide formed in advanced oxidation and electrochemical processes. Desalin Water Treat. 2012;43:267–273. doi: 10.1080/19443994.2012.672194
  • APHA/AWWA/WEF. Standard methods for the examination of water and wastewater. 21th ed. Washington, DC: American Public Health Association/American Water Works Association/Water Environment Federation; 2005.
  • Viswanathan K, Tilak BV. Chemical, electrochemical, and technological aspects of sodium chlorate manufacture. J Electrochem Sci. 1984;131(7):1551–1559. doi: 10.1149/1.2115908
  • Bard AJ, Parsons R, Jordan J. Standard potentials in aqueous solutions. New York: Marcel Dekker; 1985.
  • Buxton GV, Greenstock CL, Helman WP, Ross AB. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O−) in aqueous solution. J Phys Chem Ref Data. 1988;17:513–886. doi: 10.1063/1.555805
  • Czarnetzki LR, Janssen LJJ. Formation of hypochlorite, chlorate and oxygen during NaCl electrolysis from alkaline solutions at an RuO2/TiO2 anode. J Appl Electrochem. 1992;22:315–324. doi: 10.1007/BF01092683
  • Nicoson JS, Wang L, Becker RH, Hartz KEH, Muller CE, Margerum DW. Kinetics and mechanisms of the ozone/bromite and ozone/chlorite reactions. Inorg Chem. 2002;41:2975–2980. doi: 10.1021/ic011301s
  • Janssen LJJ, Van Der Heyden PDL. Mechanism of anodic oxidation of chlorate to perchlorate on platinum electrodes. J Appl Electrochem. 1995;25:126–136.
  • Panizza M, Cerisola G. Electrochemical processes for the treatment of organic pollutants. In: Zinger DV, editor. Advances in chemistry research, Vol. 2. New York: Nova Science; 2006. p. 1--38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.