195
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Reducing THMFP by H2O2/UV oxidation for humic acid of small molecular weight

&
Pages 417-423 | Received 09 Mar 2014, Accepted 29 Jul 2014, Published online: 26 Aug 2014

References

  • Jacangelo JDJ, Owen D, Randtke S. Selected processes for removing NOM: An overview. J AWWA. 1995;87:64–77.
  • Sanly M, Lim KC, Amal R, Fabris R, Chow C, Drikas M. A study on the removal of humic acid using advanced oxidation processes. Sep Sci Technol. 2007;42:1391–1404. doi: 10.1080/01496390701289799
  • Matilainen A, Sillanpaa M. Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere. 2010;80:351–365. doi: 10.1016/j.chemosphere.2010.04.067
  • Wang DS, Zhao YM, Yan MQ, Chow CWK. Removal of DBP precursors in micro-polluted source waters: A comparative study on the enhanced coagulation behavior. Sep Purif Technol. 2013;118:271–278. doi: 10.1016/j.seppur.2013.06.038
  • Lin HC, Wang GS. Effects of UV/H2O2 on NOM fractionation and corresponding DBPs formation. Desalination. 2011;270:221–226. doi: 10.1016/j.desal.2010.11.049
  • Murray CA, Parsons SA. Removal of NOM from drinking water: Fenton's and photo-Fenton's processes. Chemosphere. 2004;24:1017–1023. doi: 10.1016/j.chemosphere.2003.08.040
  • Wei MC, Wang KS, Hsiao TE, Lin IC, Wu HJ, Wu YL, Liu PH, Chang SH. Effects of UV irradiation on humic acid removal by ozonation, Fenton and Fe0/air treatment: THMFP and biotoxicity evaluation. J Hazard Mater. 2011;195:324–331. doi: 10.1016/j.jhazmat.2011.08.044
  • Wang Y, Wang Q, Gao BY, Yue Q, Zhao Y. The disinfection by-products precursors removal efficiency and the subsequent effects on chlorine decay for humic acid synthetic water treated by coagulation process and coagulation–ultrafiltration process. Chem Eng J. 2012;193–194:59–67. doi: 10.1016/j.cej.2012.04.003
  • Reguero V, López-Fernández R, Fermoso J, Prieto O, Pocostales P, González R, Irusta R, Villaverde S. Comparison of conventional technologies and a submerged membrane photocatalytic reactor (SMPR) for removing trihalomethanes (THM) precursors in drinking water treatment plants. Desalination. 2013;330:28–34. doi: 10.1016/j.desal.2013.09.014
  • Ribera G, Llenas L, Rovira M, de Pablo J, Martinez-Llado X. Pilot plant comparison study of two commercial nanofiltration membranes in a drinking water treatment plant. Desalin Water Treat. 2013;51(1–3):448–457. doi: 10.1080/19443994.2012.714528
  • Rakruam P, Wattanachira S. Reduction of DOM fractions and their trihalomethane formation potential in surface river water by in-line coagulation with ceramic membrane filtration. J Environ Sci. 2014;26(3):529–536. doi: 10.1016/S1001-0742(13)60471-4
  • Sarathy SR, Stefan M, Royce A, Mohseni M. Pilot-scale UV/H2O2 advanced oxidation process for surface water treatment and downstream biological treatment: Effects on natural organic matter characteristics and DBP formation potential. Environ Technol. 2011;32:1709–1718. doi: 10.1080/09593330.2011.553843
  • Yuan F, Hu C, Hu X, Wei D, Chen Y, Qu J. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. J Hazard Mater. 2011;185(2–3):1256–1263. doi: 10.1016/j.jhazmat.2010.10.040
  • He X, Pelaez M, Westrick JA, O'Shea KE, Hiskia A, Triantis T, Kaloudis T, Stefan MI, de la Cruz AA, Dionysiou DD. Efficient removal of microcystin-LR by UV-C/H2O2 in synthetic and natural water samples. Water Res. 2012;46(5):1501–1510. doi: 10.1016/j.watres.2011.11.009
  • Shu Z, Bolton JR, Belosevic M, El Din MG. Photodegradation of emerging micropollutants using the medium-pressure UV/H2O2 advanced oxidation process. Water Res. 2013;47(8):2881–2889. doi: 10.1016/j.watres.2013.02.045
  • Mitrovic JZ, Radovic MD, Andelkovic TD, Bojic DV, Bojic A. Identification of intermediates and ecotoxicity assessment during the UV/ H2O2 oxidation of azo dye reactive orange 16. J Environ Sci Heal A. 2014;49:491–502. doi: 10.1080/10934529.2014.859022
  • Naumczyk J, Bogacki J, Marcinowski P, Kowalik P. Cosmetic wastewater treatment by coagulation and advanced oxidation processes. Environ Technol. 2014;35:1–8. doi: 10.1080/09593330.2013.808245
  • Penru Y, Raaijmakers MJT, Guastalli AR, Esplugas S, Baig S. Influence of high salinity on the degradation of humic acid by UV254 and H2O2/UV254. Ozone Sci Eng. 2012;34:101–108. doi: 10.1080/01919512.2012.649998
  • Vilhunen S, Puton J, Virkutyte J, Sillanpää M. Efficiency of hydroxyl radical formation and phenol decomposition using UV light emitting diodes and H2O2. Environ Technol. 2011;32:865–872. doi: 10.1080/09593330.2010.516770
  • Li W, Lu S, Qiu Z, Lin K. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2 treatment for removal of clofibric acid from aqueous solution. Environ Technol. 2011;32:1063–1071. doi: 10.1080/09593330.2010.525750
  • Lester Y, Avisar D, Mamane H. Photodegradation of the antibiotic sulphamethoxazole in water with UV/H2O2 advanced oxidation process. Environ Technol. 2010;31:175–183. doi: 10.1080/09593330903414238
  • Grčić I, Papić S, Mesec D, Koprivanac N, Vujević D. The kinetics and efficiency of UV assisted advanced oxidation of various types of commercial organic dyes in water. J Photoch Photobio A. 2014;273:49–58. doi: 10.1016/j.jphotochem.2013.09.009
  • Olmez-Hanci T, Dalmaz B, Arslan-Alaton I, Kabdasli I, Tunay O. Kinetic modeling and toxicity assessment of diethyl phthalate treated by H2O2/UV-C process. Ozone Sci Eng. 2010;32:238–243. doi: 10.1080/01919512.2010.493395
  • Wang GS, Liao CH, Chen HW, Yang HC. Characteristics of natural organic matter degradation in water by UV/H2O2 treatment. Environ Technol. 2006;27(3):277–287. doi: 10.1080/09593332708618638
  • Sieliechi JM, Lartiges BS, Kayem GJ, Hupont S, Frochot C, Thieme J, Ghanbaja J, d'Espinose de la Caillerie JB, Barres O, Kamga R, Levitz P, Michot LJ. Changes in humic acid conformation during coagulation with ferric chloride: Implications for drinking water treatment. Water Res. 2008;2(8–9):2111–2123. doi: 10.1016/j.watres.2007.11.017
  • Ma S, Liu C, Yang K, Lin D. Coagulation removal of humic acid-stabilized carbon nanotubes from water by PACl: Influences of hydraulic condition and water chemistry. Sci Total Environ. 2012;439:123–128. doi: 10.1016/j.scitotenv.2012.09.046
  • Yu WZ, Gregory J, Li GB, Qu JH. Effect of humic acid on coagulation performance during aggregation at low temperature. Chem Eng J. 2013;223:412–417. doi: 10.1016/j.cej.2013.03.008
  • Environmental Protection Administration, Taiwan. Taiwan's Drinking Water Source Standard; 2014. Available from: http://www.epa.gov.tw.
  • Bolton JR, Bircher KG, Tumas W, Tolman CA. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems. Pure Appl Chem. 2001;73:627–637. doi: 10.1351/pac200173040627
  • Aleboyeh A, Olya M, Aleboyeh H. Electrical energy determination for an azo dye decolorization and mineralization by UV/H2O2 advanced oxidation process. Chem Eng J. 2008;137:518–524. doi: 10.1016/j.cej.2007.05.016
  • Ghoreishi SM, Haghighi MR. Chromophores removal in pulp and paper mill effluent via hydrogenation-biological batch reactors. Chem Eng J. 2007;127:59–70. doi: 10.1016/j.cej.2006.09.022
  • Matilainen A, Gjessing ET, Lahtinen T, Hed L, Bhatnagar A, Sillanpaa M. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere. 2011;83:1431–1442. doi: 10.1016/j.chemosphere.2011.01.018
  • Salari D, Daneshar N, Aghazadeh F, Khataee AR. Application of artificial neural networks for modeling of the treatment of wastewater contaminated with methyl tert-butyl ether (MTBE) by UV/H2O2 process. J Hazard Mater. 2005;125:205–210. doi: 10.1016/j.jhazmat.2005.05.030
  • Muruganandham M, Selvam K, Swaminathan M. A comparative study of quantum yield and electrical energy per order (EEO) for advanced oxidative decolourisation of reactive azo dyes by UV light. J Hazard Mater. 2007;144:316–322. doi: 10.1016/j.jhazmat.2006.10.035
  • Sarathy SR, Mohseni M. The impact of UV/H2O2 advanced oxidation on molecular size distribution of chromophoric natural organic matter. Environ Sci Technol. 2007;41:8315–8320. doi: 10.1021/es071602m
  • Sarathy SR, Mohseni M. Effects of UV/H2O2 advanced oxidation on chemical characteristics and chlorine reactivity of surface water natural organic matter. Water Res. 2010;44:4087–4096. doi: 10.1016/j.watres.2010.05.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.