355
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Biodegradability and toxicity assessment of a real textile wastewater effluent treated by an optimized electrocoagulation process

, , , , , , , & show all
Pages 496-506 | Received 07 Feb 2014, Accepted 27 Jun 2014, Published online: 03 Sep 2014

References

  • Figueroa S, Vazquez L, Alvarez-Gallegos A. Decolorizing textile wastewater with Fenton's reagent electrogenerated with a solar photovoltaic cell. Water Res 2009;43(2):283–294. doi: 10.1016/j.watres.2008.10.014
  • Syeda SR, Ferdousi SA, Ahmmed KMT. De-colorization of textile wastewater by adsorption in a fluidized bed of locally available activated carbon. J Environ Sci Health Part A-Toxic/Hazard Subst Environ Eng. 2012;47:210–220. doi: 10.1080/10934529.2012.640566
  • Lorena S, Marti C, Roberto S. Comparative study between activated sludge versus membrane bioreactor for textile wastewater. Desalination Water Treat. 2011;35:101–109. doi: 10.5004/dwt.2011.3136
  • Khandegar V, Saroha AK. Electrocoagulation for the treatment of textile industry effluent e A review. J Environ Manage 2013;128:949–963. doi: 10.1016/j.jenvman.2013.06.043
  • Soares PA, Silva TFCV, Manenti DR, Souza SMAGU, Boaventura RAR, Vilar VJP. Insights into real cotton-textile dyeing wastewater treatment using solar advanced oxidation processes. Environ Sci Pollut Res. 2014;21:932–945. doi: 10.1007/s11356-013-1934-0
  • Vilar VJP, Rocha EMR, Mota FS, Fonseca A, Saraiva I, Boaventura RAR. Treatment of a sanitary landfill leachate using combined solar photo-Fenton and biological immobilized biomass reactor at a pilot scale. Water Res. 2011;45:2647–2658. doi: 10.1016/j.watres.2011.02.019
  • Módenes AN, Espinoza-Quiñones FR, Borba FH, Manenti DR. Performance evaluation of an integrated photo-Fenton-electrocoagulation process applied to pollutant removal from tannery effluent in batch system. Chem Eng J. 2012;197:1–9. doi: 10.1016/j.cej.2012.05.015
  • Espinoza-Quiñones FR, Fornari MMT, Módenes AN, Palácio SM, da Silva FG, Szymanski N, Kroumov AD, Trigueros DEG. Pollutant removal from tannery effluent by electrocoagulation. Chem Eng J. 2009;151:59–65. doi: 10.1016/j.cej.2009.01.043
  • Pintor AMA, Vilar VJP, Boaventura RAR. Decontamination of cork wastewaters by solar-photo-Fenton process using cork bleaching wastewater as H2O2 source. Sol Energy. 2011;85:579–587. doi: 10.1016/j.solener.2011.01.003
  • Sirtori C, Zapata A, Oller I, Gernjak W, Aguera A, Malato S. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Res. 2009;43:661–668. doi: 10.1016/j.watres.2008.11.013
  • Souza BS, Moreira FC, Dezotti MWC, Vilar VJP, Boaventura RAR. Application of biological oxidation and solar driven advanced oxidation processes to remediation of winery wastewater. Catal Today. 2013;209:201–208. doi: 10.1016/j.cattod.2012.08.037
  • Silva TFCV, Fonseca A, Isabel S, Vilar VJP, Boaventura RAR. Biodegradability enhancement of a leachate after biological lagooning using a solar driven photo-Fenton reaction, and further combination with an activated sludge biological process, at pre-industrial scale. Water Res. 2013;47:3543–3557. doi: 10.1016/j.watres.2013.04.008
  • Rosáles E, Pazos M, Sanromán MA. Advances in the electro-fenton process for remediation of recalcitrant organic compounds. Chem Eng Technol. 2012;35:609–617. doi: 10.1002/ceat.201100321
  • Chen GH. Electrochemical technologies in wastewater treatment. Sep Purif Technol. 2004;38:11–41. doi: 10.1016/j.seppur.2003.10.006
  • Mollah MYA, Morkovsky P, Gomes JAG, Kesmez M, Parga J, Cocke DL. Fundamentals, present and future perspectives of electrocoagulation. J Hazard Mater. 2004;114:199–210. doi: 10.1016/j.jhazmat.2004.08.009
  • Merzouk B, Madani K, Sekki A. Using electrocoagulation-electroflotation technology to treat synthetic solution and textile wastewater, two case studies. Desalination. 2010;250:573–577. doi: 10.1016/j.desal.2009.09.026
  • Daneshvar N, Sorkhabi HA, Kasiri MB. Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. J Hazard Mater. 2004;112:55–62. doi: 10.1016/j.jhazmat.2004.03.021
  • Daneshvar N, Khataee AR, Djafarzadeh N. The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process. J Hazard Mater. 2006;B137:1788–1795. doi: 10.1016/j.jhazmat.2006.05.042
  • Phalakornkule C, Polgumhang S, Tongdaung W, Karakat B, Nuyut T. Electrocoagulation of blue reactive, red disperse and mixed dyes, and application in treating textile effluent. J Environ Manage. 2010;91:918–926. doi: 10.1016/j.jenvman.2009.11.008
  • Kabdasli I, Vardar B, Arslan-Alaton I, Tuenay O. Effect of dye auxiliaries on color and COD removal from simulated reactive dyebath effluent by electrocoagulation. Chem Eng J. 2009;148:89–96. doi: 10.1016/j.cej.2008.08.006
  • Palácio SM, Espinoza-Quiñones FR, Módenes AN, Oliveira CC, Borba FH, Silva FG. Toxicity assessment from electro-coagulation treated-textile dye wastewaters by bioassays. J Hazard Mater. 2009;172:330–337. doi: 10.1016/j.jhazmat.2009.07.015
  • Pajootan E, Arami M, Mahmoodi NM. Binary system dye removal by electrocoagulation from synthetic and real colored wastewaters. J Taiwan Inst Chem Eng. 2012;43:282–290. doi: 10.1016/j.jtice.2011.10.014
  • Zongo I, Maiga AH, Wethe J, Valentin G, Leclerc JP, Paternotte G, Lapicque F. Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: compared variations of COD levels, turbidity and absorbance. J Hazard Mater. 2009;169:70–76. doi: 10.1016/j.jhazmat.2009.03.072
  • Merzouk B, Yakoubi M, Zongo I, Leclerc JP, Paternotte G, Pontvianne S, Lapicque F. Effect of modification of textile wastewater composition on electrocoagulation efficiency. Desalination. 2011;250:181–186. doi: 10.1016/j.desal.2011.02.055
  • Aoudj S, Khelifa A, Drouiche N, Hecini M, Hamitouche H. Electrocoagulation process applied to wastewater containing dyes from textile industry. Chem Eng Proces. 2010;49:1176–1182. doi: 10.1016/j.cep.2010.08.019
  • Zeboudji B, Drouiche N, Lounici H, Mameri N, Ghaffour N. The influence of parameters affecting boron removal by electrocoagulation process. Sep Sci Technol. 2013;48(8):1280–1288. doi: 10.1080/01496395.2012.731125
  • Espinoza-Quiñones FR, Módenes AN, Theodoro PS, Palácio SM, Trigueros DEG, Borba CE, Abugderah MM, Kroumov AD. Optimization of the iron electro-coagulation process of Cr, Ni, Cu, and Zn galvanization by-Products by using response surface methodology. Sep Sci Technol. 2012;47(5):688–699. doi: 10.1080/01496395.2011.629396
  • Boudjema N, Drouiche N, Abdi N, Grib H, Lounici H, Pauss A, Mameri N. Treatment of Oued El Harrach river water by electrocoagulation noting the effect of the electric field on microorganisms. J Taiwan Inst Chem Eng. 2014;45(4):1564–1570. doi: 10.1016/j.jtice.2013.10.006
  • Dubrawski KL, Fauvel M, Mohseni M. Metal type and natural organic matter source for direct filtration electrocoagulation of drinking water. J Hazard Mater. 2013;244–245:135–141. doi: 10.1016/j.jhazmat.2012.11.027
  • Clesceri LS, Greenberg AE, Eaton AD. Standard Methods for Examination of Water & Wastewater. Washington, DC: American Public Health Association (APHA), American Water Works Association (AWWA) & Water Environment Federation (WEF); 2005.
  • Ferreira SLC, dos Santos WNL, Quintella CM, Neto BB, Bosque-Sendra JA. Doehlert matrix: a chemometric tool for analytical chemistry – review. Talanta. 2004;63:1061–1067. doi: 10.1016/j.talanta.2004.01.015
  • Myers RH, Montgomery DC. Response surface methodology: process and product optimization using designed experiments. New York: Wiley Interdiscip. Ver. Comput. Stat., John Wiley & Sons; 2002.
  • Khuri AI, Mukhopadhyay S. Response surface methodology. Wiley Interdiscip Ver Comput Stat. 2010;2:128–149. doi: 10.1002/wics.73
  • OECD. OECD guidelines for the testing of chemicals. Test no. 302B: Inherent biodegradability: Zahn–Wellens/EMPA. Paris: OECD Publishing; 1992.
  • EPA. US Environmental Protection Agency, Prevention Pesticides and Toxic Substances (7101), in Fates, transport and transformation test guidelines OPPTS 835.3200 Zahn–Wellens/EMPA test. Washington, DC: EPA; 1996.
  • Sobrero MC, Ronco A. Ensayo de toxicidad aguda con semillas de lechuga (Lactuca sativa L.), Ensayos Toxicológicos y Métodos de Evaluación de Calidad de Águas. Centro Internacional de Investigaciónes para el Desarrollo, Ottawa, Canada, 2004, pp. 71–79.
  • Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med. 1982;45:31–34. doi: 10.1055/s-2007-971236
  • Irdemez S, Demircioglu N, Yildiz YS. The effects of pH on phosphate removal from wastewater by electrocoagulation with iron plate electrodes. J Hazard Mater. 2006;B137:1231–1235. doi: 10.1016/j.jhazmat.2006.04.019
  • Donini JC, Kan J, Szynkarczuk J, Hassan TA, Kar KL. The operating cost of electrocoagulation. Can J Chem Eng. 1994;72:1007–1012. doi: 10.1002/cjce.5450720610
  • Amat AM, Arqués A, Galindo F, Miranda MA, Santos-Juanes L, Vercher RF, Vicente R. Acridine yellow as solar photocatalyst for enhancing biodegradability and eliminating ferulic acid as model pollutant. Appl Catal B: Environ. 2007;73:220–226. doi: 10.1016/j.apcatb.2006.12.003
  • Arqués A, Amat AM, García-Ripoll A, Vicente R. Detoxification and/or increase of the biodegradability of aqueous solutions of dimethoate by means of solar photocatalysis. J Hazard Mater. 2007;146:447–452. doi: 10.1016/j.jhazmat.2007.04.046
  • Hamilton MA, Russo RC, Thurston RV. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol. 1977;11:714–719. doi: 10.1021/es60130a004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.