514
Views
44
CrossRef citations to date
0
Altmetric
Original Articles

The fate of Microcystis aeruginosa cells during the ferric chloride coagulation and flocs storage processes

, , , , , , & show all
Pages 920-928 | Received 22 Apr 2014, Accepted 14 Sep 2014, Published online: 17 Oct 2014

References

  • Paerl HW, Hall NS, Calandrino ES. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ. 2011;409:1739–1745. doi: 10.1016/j.scitotenv.2011.02.001
  • Sorlini S, Gialdini F, Collivignarelli C. Removal of cyanobacterial cells and microcystin-LR from drinking water using a hollow fiber microfiltration pilot plant. Desalination. 2013;309:106–112. doi: 10.1016/j.desal.2012.09.028
  • Isaacs JD, Strangman WK, Barbera AE, Mallin MA, McIver MR, Wright JLC. Microcystins and two new micropeptin cyanopeptides produced by unprecedented Microcystis aeruginosa blooms in North Carolina's Cape Fear River. Harmful Algae. 2014;31:82–86. doi: 10.1016/j.hal.2013.09.010
  • Campinas M, Rosa MJ. Evaluation of cyanobacterial cells removal and lysis by ultrafiltration. Sep Purif Technol. 2010;70:345–353. doi: 10.1016/j.seppur.2009.10.021
  • Wert EC, Dong MM, Rosario-Ortiz FL. Using digital flow cytometry to assess the degradation of three cyanobacteria species after oxidation processes. Water Res. 2013;47:3752–3761. doi: 10.1016/j.watres.2013.04.038
  • Chow CWK, Drikas M, House J, Burch MD, Velzeboer RMA. The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Res. 1999;33(15):3253–3262. doi: 10.1016/S0043-1354(99)00051-2
  • Sun F, Pei HY, Hu WR, Li XQ, Ma CX, Pei RT. The cell damage of Microcystis aeruginosa in PACl coagulation and floc storage processes. Sep Purif Technol. 2013;115:123–128. doi: 10.1016/j.seppur.2013.05.004
  • Sun F, Pei HY, Hu WR, Ma CX. The lysis of Microcystis aeruginosa in AlCl3 coagulation and sedimentation processes. Chem Eng J. 2012;193–194:196–202. doi: 10.1016/j.cej.2012.04.043
  • Schmidt W, Willmitzer H, Bornmann K, Pietsch J. Production of drinking water from raw water containing cyanobacteria-pilot plant studies for assessing the risk of microcystin breakthrough. Environ Toxicol. 2002;17(4):375–385. doi: 10.1002/tox.10067
  • Coral LA, Zamyadi A, Barbeau B, Bassetti FJ, Lapolli FR, Prévost M. Oxidation of Microcystis aeruginosa and Anabaena flos-aquae by ozone: impacts on cell integrity and chlorination by-product formation. Water Res. 2013;47:2983–2994. doi: 10.1016/j.watres.2013.03.012
  • Zamyadi A, Ho L, Newcombe G, Bustamante H, Prévost M. Fate of toxic cyanobacterial cells and disinfection by-products formation after chlorination. Water Res. 2012;46:1524–1535. doi: 10.1016/j.watres.2011.06.029
  • Ho L, Dreyfus J, Boyer J, Lowe T, Bustamante H, Duker P, Meli T, Newcombe G. Fate of cyanobacteria and their metabolites during water treatment sludge management processes. Sci Total Environ. 2012;424:232–238. doi: 10.1016/j.scitotenv.2012.02.025
  • Pei HY, Ma CX, Hu WR, Sun F. The behaviors of Microcystis aeruginosa cells and extracellular microcystins during chitosan flocculation and flocs storage processes. Bioresour Technol. 2014;151:314–322. doi: 10.1016/j.biortech.2013.10.077
  • Chow CWK, House J, Velzeboer RMA, Drikas M, Burch MD, Steffensen DA. The effect of ferric chloride flocculation on cyanobacterial cells. Water Res. 1998;32(3):808–814. doi: 10.1016/S0043-1354(97)00276-5
  • Peterson HG, Hrudey SE, Cantin IA, Perley TR, Kenefick SL. Physiological toxicity, cell membrane damage and the release of dissolved organic carbon and geosmin by Aphanizomenon Flos-aquae after exposure to water treatment chemicals. Water Res. 1995;29(6):1515–1523. doi: 10.1016/0043-1354(94)00300-V
  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol. 1979;111(1):1–61. doi: 10.1099/00221287-111-1-1
  • Sun F, Pei HY, Hu WR, Song MM. A multi-technique approach for the quantification of Microcystis aeruginosa FACHB-905 biomass during high algae-laden periods. Environ Technol. 2012;33(15):1773–1779. doi: 10.1080/09593330.2011.644868
  • Mclachlan J, Gorham PR. Effects of pH and nitrogen sources on growth of Microcystis aeruginosa KÜTZ. Can J Microbiol. 1962;8(1):1–11. doi: 10.1139/m62-001
  • Wicks RJ, Thiel PG. Environmental factors affecting the production of peptide toxins in floating scums of the cyanobacterium Microcystis aeruginosa in a Hypertrophic African reservoir. Environ Sci Technol. 1990;24:1413–1418. doi: 10.1021/es00079a017
  • Henderson RK, Parsons SA, Jefferson B. The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae. Water Res. 2010;44:3617–3624. doi: 10.1016/j.watres.2010.04.016
  • Shin JY, Spinette RF, O'melia CR. Stoichiometry of coagulation revisited. Environ Sci Technol. 2008;42:2582–2589. doi: 10.1021/es071536o
  • Lawton LA, Robertson PKJ, Cornish BJPA, Marr IL, Jaspars M. Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts. J Catal. 2003;213:109–113. doi: 10.1016/S0021-9517(02)00049-0
  • Dai GF, Quan CY, Zhang XZ, Liu J, Song LR, Gan NQ. Fast removal of cyanobacterial toxin microcystin-LR by a low-cytotoxic microgel-Fe(III) complex. Water Res. 2012;46:1482–1489. doi: 10.1016/j.watres.2011.11.010
  • Volk C, Bell K, Ibrahim E, Verges D, Amy G, Lechevallier M. Impact of enhanced and optimized coagulation on removal of organic matter and its biodegradable fraction in drinking water. Water Res. 2000;34(12):3247–3257. doi: 10.1016/S0043-1354(00)00033-6
  • El Samrani AG, Lartiges BS, Montargès-Pelletier E, Kazpard V, Barrès O, Ghanbaja J. Clarification of municipal sewage with ferric chloride: the nature of coagulant species. Water Res. 2004;38:756–768. doi: 10.1016/j.watres.2003.10.002
  • Garzon-Sanabria AJ, Ramirez-Caballero SS, Moss FEP, Nikolov ZL. Effect of algogenic organic matter (AOM) and sodium chloride on Nannochloropsis salina flocculation efficiency. Bioresour Technol. 2013;143:231–237. doi: 10.1016/j.biortech.2013.05.125
  • Pommerenk P, Schafran GC. Adsorption of inorganic and organic ligands onto hydrous aluminum oxide: evaluation of surface charge and the impacts on particle and NOM removal during water treatment. Environ Sci Technol. 2005;39:6429–6434. doi: 10.1021/es050087u
  • Matilainen A, Vepsäläinen M, Mika S. Natural organic matter removal by coagulation during drinking water treatment: a review. Adv Colloid Interface Sci. 2010;159:189–197. doi: 10.1016/j.cis.2010.06.007
  • Ho L, Gaudieux A-L, Fanok S, Newcombe G, Humpage AR. Bacterial degradation of microcystin toxins in drinking water eliminates their toxicity. Toxicon. 2007;50:438–441. doi: 10.1016/j.toxicon.2007.03.021
  • Li JM, Shimizu K, Maseda H, Lu ZJ, Utsumi M, Zhang ZY, Sugiura N. Investigations into the biodegradation of microcystin-LR mediated by the biofilm in wintertime from a biological treatment facility in a drinking-water treatment plant. Bioresour Technol. 2012;106:27–35. doi: 10.1016/j.biortech.2011.11.099
  • Li JM, Shimizu K, Sakharkar MK, Utsumi M, Zhang ZY, Sugiura N. Comparative study for the effects of variable nutrient conditions on the biodegradation of microcystin-LR and concurrent dynamics in microcystin-degrading gene abundance. Bioresour Technol. 2011;102:9509–9517. doi: 10.1016/j.biortech.2011.07.112
  • Chen XG, Yang X, Yang LL, Xiao BD, Wu XQ, Wang JT, Wan HG. An effective pathway for the removal of microcystin LR via anoxic biodegradation in lake sediments. Water Res. 2010;44:1884–1892. doi: 10.1016/j.watres.2009.11.025
  • Edwards C, Graham D, Fowler N, Lawton LA. Biodegradation of microcystins and nodularin in freshwaters. Chemosphere. 2008;73:1315–1321. doi: 10.1016/j.chemosphere.2008.07.015
  • Chen W, Song LR, Peng L, Wan N, Zhang XM, Gan NQ. Reduction in microcystin concentrations in large and shallow lakes: water and sediment-interface contributions. Water Res. 2008;42:763–773. doi: 10.1016/j.watres.2007.08.007
  • Hyenstrand P, Rohrlack T, Beattie KA, Metcalf JS, Codd GA, Christoffersen, K. Laboratory studies of dissolved radiolabelled microcystin-LR in lake water. Water Res. 2003;37:3299–3306. doi: 10.1016/S0043-1354(03)00180-5
  • Zhang H, Yang LF, Yu ZL, Huang Q. Inactivation of Microcystis aeruginosa by DC glow discharge plasma: impacts on cell integrity, pigment contents and microcystins degradation. J Hazard Mater. 2014;268:33–42. doi: 10.1016/j.jhazmat.2014.01.001
  • Choi CJ, Berges JA, Young EB. Rapid effects of diverse toxic water pollutants on chlorophyll a fluorescence: variable responses among freshwater microalgae. Water Res. 2012;46:2615–2626. doi: 10.1016/j.watres.2012.02.027
  • Feng Y, Chang XX, Zhao LX, Li XP, Li WJ, Jiang Y. Nanaomycin a methyl ester, an actinomycete metabolite: algicidal activity and the physiological response of Microcystis aeruginosa. Ecol Eng. 2013;53:306–312. doi: 10.1016/j.ecoleng.2012.12.066
  • Ma J, Liu W. Effectiveness and mechanism of potassium ferrate(VI) preoxidation for algae removal by coagulation. Water Res. 2002;36:871–878. doi: 10.1016/S0043-1354(01)00282-2
  • Gao SS, Yang JX, Tian JY, Ma F, Tu G, Du MA. Electro-coagulation-flotation process for algae removal. J Hazard Mater. 2010;177:336–343. doi: 10.1016/j.jhazmat.2009.12.037

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.