481
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Fabrication of an inexpensive and high efficiency microphotoreactor using CO2 laser technique for photocatalytic water treatment applications

&
Pages 1063-1073 | Received 17 Jun 2014, Accepted 02 Oct 2014, Published online: 04 Nov 2014

References

  • Saleh TA, Gupta VK. Column with CNT/magnesium oxide composite for lead (II) removal from water. Environ. Sci. Pollut. Res. 2012;19:1224–1228. doi: 10.1007/s11356-011-0670-6
  • Mittal A, Gupta VK, Malviya A, Mittal J. Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (metanil yellow) by adsorption over waste materials (bottom ash and de-oiled soya). J. Hazard. Mater. 2008;151:821–832. doi: 10.1016/j.jhazmat.2007.06.059
  • Gupta VK, Agarwal S, Saleh TA. Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater. 2011;185:17–23. doi: 10.1016/j.jhazmat.2010.08.053
  • Karthikeyan S, Gupta VK, Boopathy R, Titus A, Sekaran G. A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies. J. Mol. Liq. 2012;173:153–163. doi: 10.1016/j.molliq.2012.06.022
  • Eskandarloo H, Badiei A, Haug C. Enhanced photocatalytic degradation of an azo textile dye by using TiO2/NiO coupled nanoparticles: optimization of synthesis and operational key factors. Mater. Sci. Semicond. Process. 2014;27:240–253. doi: 10.1016/j.mssp.2014.06.029
  • Eskandarloo H, Badiei A, Behnajady MA. TiO2/CeO2 hybrid photocatalyst with enhanced photocatalytic activity: optimization of synthesis variables. Ind. Eng. Chem. Res. 2014;53:7847–7855. doi: 10.1021/ie403460d
  • Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S. Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater. Sci. Eng. C. 2012;32:12–17. doi: 10.1016/j.msec.2011.08.018
  • Eskandarloo H, Badiei A, Behnajady MA, Ziarani GM. Minimization of electrical energy consumption in the photocatalytic reduction of Cr (vi) by using immobilized Mg, Ag co-impregnated TiO2 nanoparticles. RSC Adv. 2014;4:28587–28596. doi: 10.1039/c4ra03418j
  • Behnajady MA, Eskandarloo H. Silver and copper co- impregnated onto TiO2–P25 nanoparticles and its photocatalytic activity. Chem. Eng. J. 2013;228:1207–1213. doi: 10.1016/j.cej.2013.04.110
  • Behnajady MA, Eskandarloo H. Characterization and photocatalytic activity of Ag–Cu/TiO2 nanoparticles prepared by sol-gel method. J. Nanosci. Nanotechnol. 2013;13:548–553. doi: 10.1166/jnn.2013.6859
  • Gupta VK, Jain R, Mittal A, Mathur M, Sikarwar S. Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J. Colloid Interface Sci. 2007;309:464–469. doi: 10.1016/j.jcis.2006.12.010
  • Saien J, Khezrianjoo S. Degradation of the fungicide carbendazim in aqueous solutions with UV/TiO2 process: optimization, kinetics and toxicity studies. J. Hazard. Mater. 2008;157:269–276. doi: 10.1016/j.jhazmat.2007.12.094
  • Schwitzgebel J, Ekerdt JG, Gerischer H, Heller A. Role of the oxygen molecule and of the photogenerated electron in TiO2-photocatalyzed air oxidation reactions. J. Phys. Chem. 1995;99:5633–5638. doi: 10.1021/j100015a055
  • Xiong S, George S, Ji Z, Lin S, Yu H, Damoiseaux R, France B, Ng KW, Loo SCJ. Size of TiO2 nanoparticles influences their phototoxicity: an in vitro investigation. Arch. Toxicol. 2013;87:99–109. doi: 10.1007/s00204-012-0912-5
  • El-Kemary M, El-Shamy H, El-Mehasseb I. Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. J. Lumin. 2010;130:2327–2331. doi: 10.1016/j.jlumin.2010.07.013
  • Vescovi T, Coleman HM, Amal R. The effect of pH on UV-based advanced oxidation technologies-1, 4-dioxane degradation. J. Hazard. Mater. 2010;182:75–79. doi: 10.1016/j.jhazmat.2010.06.001
  • Matsushita Y, Ichimura T, Ohba N, Kumada S, Sakeda K, Suzuki T, Tanibata H, Murata T. Recent progress on photoreactions in microreactors. Pure Appl. Chem. 2007;79:1959–1968. doi: 10.1351/pac200779111959
  • Matsushita Y, Ohba N, Kumada S, Sakeda K, Suzuki T, Ichimura T. Photocatalytic reactions in microreactors. Chem. Eng. J. 2008;135:S303–S308. doi: 10.1016/j.cej.2007.07.045
  • Liu Y, Chen X, Wang R, Xin JH. Polymer microspheres stabilized by titania nanoparticles. Mater. Lett. 2006;60:3731–3734. doi: 10.1016/j.matlet.2006.03.098
  • Nge PN, Rogers CI, Woolley AT. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 2013;113:2550–2583. doi: 10.1021/cr300337x
  • Zhang Q, Zhang Q, Wang H, Li Y. A high efficiency microreactor with Pt/ZnO nanorod arrays on the inner wall for photodegradation of phenol. J. Hazard. Mater. 2013;254–255:318–324. doi: 10.1016/j.jhazmat.2013.04.012
  • Aran HC, Salamon D, Rijnaarts T, Mul G, Wessling M, Lammertink RGH. Porous photocatalytic membrane microreactor (P2M2): a new reactor concept for photochemistry. J. Photochem. Photobiol. A. 2011;225:36–41. doi: 10.1016/j.jphotochem.2011.09.022
  • Kashid MN, Gupta A, Renken A, Kiwi-Minsker L. Numbering-up and mass transfer studies of liquid–liquid two-phase microstructured reactors. Chem. Eng. J. 2010;158:233–240. doi: 10.1016/j.cej.2010.01.020
  • Yavorskyy A, Shvydkiv O, Hoffmann N, Nolan K, Oelgemöller M. Parallel microflow photochemistry: process optimization, scale-up, and library synthesis. Org. Lett. 2012;14:4342–4345. doi: 10.1021/ol301773r
  • Charles G, Roques-Carmes T, Becheikh N, Falk L, Commenge JM, Corbel S. Determination of kinetic constants of a photocatalytic reaction in micro-channel reactors in the presence of mass-transfer limitation and axial dispersion. J. Photochem. Photobiol. A. 2011;223:202–211. doi: 10.1016/j.jphotochem.2011.08.019
  • Huang C, Wang Y, Luo G. Preparation of highly dispersed and small-sized ZnO nanoparticles in a membrane dispersion microreactor and their photocatalytic degradation. Ind. Eng. Chem. Res. 2013;52:5683–5690. doi: 10.1021/ie303408f
  • Coyle EE, Oelgemöller M. Micro-photochemistry: photochemistry in microstructured reactors. The new photochemistry of the future? Photochem. Photobiol. Sci. 2008;7:1313–1322. doi: 10.1039/b808778d
  • Kikutani Y, Hibara A, Uchiyama K, Hisamoto H, Tokeshi M, Kitamori T. Pile-up glass microreactor. Lab Chip. 2002;2:193–196. doi: 10.1039/b208383n
  • Ehrfeld W, Hessel V, Löwe H. Microreactors: new technology for modern chemistry. Weinheim: Wiley-VCH; 2000.
  • Jerjes W, Upile T, Hamdoon Z, Al-Khawalde M, Morcos M, Mosse CA, Hopper C. CO2 laser of oral dysplasia: clinicopathological features of recurrence and malignant transformation. Laser. Med. Sci. 2012;27:169–179. doi: 10.1007/s10103-011-0916-z
  • Slusher RE. Laser technology. Rev. Mod. Phys. 1999;71:S471–S479. doi: 10.1103/RevModPhys.71.S471
  • Gupta VK, Gupta B, Rastogi A, Agarwal S, Nayak A. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-acid blue 113. J. Hazard. Mater. 2011;186:891–901. doi: 10.1016/j.jhazmat.2010.11.091
  • Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK. Adsorption of hazardous dye crystal violet from wastewater by waste materials. J. Colloid Interface Sci. 2010;343:463–473. doi: 10.1016/j.jcis.2009.11.060
  • Gupta VK, Jain R, Varshney S. Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents. J. Colloid Interface Sci. 2007;312:292–296. doi: 10.1016/j.jcis.2007.03.054
  • Gupta VK, Mittal A, Krishnan L, Mittal J. Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya. J. Colloid Interface Sci. 2006;293:16–26. doi: 10.1016/j.jcis.2005.06.021
  • Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK. Decoloration treatment of a hazardous triarylmethane dye, light green SF (yellowish) by waste material adsorbents. J. Colloid Interface Sci. 2010;342:518–527. doi: 10.1016/j.jcis.2009.10.046
  • Ray AK, Beenackers AA. Novel photocatalytic reactor for water purification. AlChE J. 1998;44:477–483. doi: 10.1002/aic.690440224
  • Priya DN, Modak JM, Trebše P, Žabar R, Raichur AM. Photocatalytic degradation of dimethoate using LbL fabricated TiO2/polymer hybrid films. J. Hazard. Mater. 2011;195:214–222. doi: 10.1016/j.jhazmat.2011.08.030
  • Silva CG, Faria JL. Effect of key operational parameters on the photocatalytic oxidation of phenol by nanocrystalline sol-gel TiO2 under UV irradiation. J. Mol. Catal. A: Chem. 2009;305:147–154. doi: 10.1016/j.molcata.2008.12.015
  • Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA. Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water Air Soil Pollut. 2011;215:3–29. doi: 10.1007/s11270-010-0456-3
  • Behnajady MA, Tohidi Y. The effect of operational parameters in the photocatalytic activity of synthesized Mg/ZnO–SnO2 nanoparticles. Desalin. Water Treat. http://dx.doi.org/10.1080/19443994.2013.852482
  • Rauf MA, Ashraf SS. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 2009;151:10–18. doi: 10.1016/j.cej.2009.02.026
  • Khatamian M, Alaji Z. Efficient adsorption-photodegradation of 4-nitrophenol in aqueous solution by using ZnO/HZSM-5 nanocomposites. Desalination. 2012;286:248–253. doi: 10.1016/j.desal.2011.11.031
  • Gupta VK, Jain R, Agarwal S, Nayak A, Shrivastava M. Photodegradation of hazardous dye quinolone yellow catalyzed by TiO2. J. Colloid Interface Sci. 2012;366:135–140. doi: 10.1016/j.jcis.2011.08.059
  • Chakrabarti S, Dutta B. Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 2004;112:269–278. doi: 10.1016/j.jhazmat.2004.05.013
  • Daneshvar N, Rabbani M, Modirshahla N, Behnajady MA. Kinetic modeling of photocatalytic degradation of Acid Red 27 in UV/TiO2 process. J. Photochem. Photobiol. A. 2004;168:39–45. doi: 10.1016/j.jphotochem.2004.05.011
  • Khodja AA, Sehili T, Pilichowski JF, Boule P. Photocatalytic degradation of 2–phenylphenol on TiO2 and ZnO in aqueous suspensions. J. Photochem. Photobiol. A. 2001;141:231–239. doi: 10.1016/S1010-6030(01)00423-3
  • Behnajady M, Modirshahla N, Hamzavi R. Kinetic study on photocatalytic degradation of CI acid yellow 23 by ZnO photocatalyst. J. Hazard. Mater. 2006;133:226–232. doi: 10.1016/j.jhazmat.2005.10.022
  • Daneshvar N, Rabbani M, Modirshahla N, Behnajady MA. Photooxidative degradation of acid red 27 in a tubular continuous-flow photoreactor: influence of operational parameters and mineralization products. J. Hazard. Mater. 2005;118:155–160. doi: 10.1016/j.jhazmat.2004.10.007
  • Park N-G, van de Lagemaat J, Frank AJ. Comparison of dye-sensitized rutile and anatase-based TiO2 solar cells. J. Phys. Chem. B. 2000;104:8989–8994. doi: 10.1021/jp994365l
  • Behnajady MA, Eskandarloo H, Modirshahla N, Shokri M. Investigation of the effect of sol-gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination. 2011;278:10–17. doi: 10.1016/j.desal.2011.04.019
  • Park N–G, Schlichthörl G, van de Lagemaat J, Cheong HM, Mascarenhas A, Frank AJ. Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4. J. Phys. Chem. B. 1999;103:3308–3314. doi: 10.1021/jp984529i
  • Wang CC, Zhang Z, Ying JY. Photocatalytic decomposition of halogenated organics over nanocrystalline titania. Nanostruct. Mater. 1997;9:583–586. doi: 10.1016/S0965-9773(97)00130-X
  • Behnajady MA, Modirshahla N, Shokri M, Elham H, Zeininezhad A. The effect of particle size and crystal structure of titanium dioxide nanoparticles on the photocatalytic properties. J. Environ. Sci. Health. Part A. 2008;43:460–467. doi: 10.1080/10934520701796267
  • Kim GY, Lee KB, Cho SH, Shim J, Moon SH. Electroenzymatic degradation of azo dye using an immobilized peroxidase enzyme. J. Hazard. Mater. 2005;126:183–188. doi: 10.1016/j.jhazmat.2005.06.023
  • Guillard C, Lachheb H, Houas A, Ksibi M, Elaloui E, Herrmann JM. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. J. Photochem. Photobiol. A. 2003;158:27–36. doi: 10.1016/S1010-6030(03)00016-9
  • Behnajady MA, Eskandarloo H, Modirshahla N, Shokri M. Influence of the chemical structure of organic pollutants on photocatalytic activity of TiO2 nanoparticles: kinetic analysis and evaluation of electrical energy per order (EEO). Dig. J. Nanomater. Bios. 2011;6:1887–1895.
  • Esen B, Yumak T, Sınağ A, Yıldız T. Investigation of photocatalytic effect of SnO2 nanoparticles synthesized by hydrothermal method on the decolorization of two organic dyes. Photochem. Photobiol. 2011;87:267–274. doi: 10.1111/j.1751-1097.2010.00863.x
  • Khataee AR, Pons MN, Zahraa O. Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure. J. Hazard. Mater. 2009;168:451–457. doi: 10.1016/j.jhazmat.2009.02.052
  • Khataee AR, Kasiri MB. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J. Mol. Catal. A: Chem. 2010;328:8–26. doi: 10.1016/j.molcata.2010.05.023
  • Gorges R, Meyer S, Kreisel G. Photocatalysis in microreactors. J. Photochem. Photobiol. A. 2004;167:95–99. doi: 10.1016/j.jphotochem.2004.04.004
  • Lei L, Wang N, Zhang XM, Tai Q, Tsai DP, Chan HL. Optofluidic planar reactors for photocatalytic water treatment using solar energy. Biomicrofluidics. 2010;4:043004–043016. doi: 10.1063/1.3491471
  • Wang N, Lei L, Zhang XM, Tsang YH, Chen Y, Chan HLW. A comparative study of preparation methods of nanoporous TiO2 films for microfluidic photocatalysis. Microelectron. Eng. 2011;88:2797–2799. doi: 10.1016/j.mee.2010.12.051
  • Yoon TH, Hong LY, Kim DP. Photocatalytic reaction using novel inorganic polymer derived packed bed microreactor with modified TiO2 microbeads. Chem. Eng. J. 2011;167:666–670. doi: 10.1016/j.cej.2010.08.090

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.