252
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced colloidal stability of nanoscale zero valent iron particles in the presence of sodium silicate water glass

, , &
Pages 358-365 | Received 09 Apr 2014, Accepted 13 Oct 2014, Published online: 10 Nov 2014

References

  • Masciangioli T, Zhang WX. Environmental technologies at the nanoscale. Environ Sci Technol. 2003;37:102a–108a. doi: 10.1021/es0323998
  • Sun YP, Li XQ, Cao JS, Zhang WX, Wang HP. Characterization of zero-valent iron nanoparticles. Adv Colloid Interfac. 2006;120:47–56. doi: 10.1016/j.cis.2006.03.001
  • Wang CB, Zhang WX. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol. 1997;31:2154–2156. doi: 10.1021/es970039c
  • Zhang WX. Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res. 2003;5:323–332. doi: 10.1023/A:1025520116015
  • Dries J, Bastiaens L, Springael D, Agathos SN, Diels L. Combined removal of chlorinated ethanes and heavy metals by zerovalent iron in batch and continuous flow column systems. Environ Sci Technol. 2005;39:8460–8465. doi: 10.1021/es050251d
  • Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV. TCE Dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol. 2005;39:1338–1345. doi: 10.1021/es049195r
  • Song H, Carraway ER. Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ Sci Technol. 2005;39:6237–6245. doi: 10.1021/es048262e
  • Matheson LJ, Tratnyek PG. Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol. 1994;28:2045–2053. doi: 10.1021/es00061a012
  • Joo SH, Zhao D. Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere. 2008;70:418–425. doi: 10.1016/j.chemosphere.2007.06.070
  • Satapanajaru T, Anurakpongsatorn P, Pengthamkeerati P, Boparai H. Remediation of atrazine-contaminated soil and water by nano zerovalent iron. Water Air Soil Pollut. 2008;192:349–359. doi: 10.1007/s11270-008-9661-8
  • Tian H, Li J, Mu Z, Li L, Hao Z. Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Sep Purif Technol. 2009;66:84–89. doi: 10.1016/j.seppur.2008.11.018
  • Wu Y, Luo H, Wang H. Removal of para-nitrochlorobenzene from aqueous solution on surfactant-modified nanoscale zero-valent iron/graphene nanocomposites. Environ Technol. 2014;35:2698–2707. doi: 10.1080/09593330.2014.919032
  • Li X-q, Zhang W-x. Iron nanoparticles: the core−shell structure and unique properties for Ni(II) sequestration. Langmuir. 2006;22:4638–4642. doi: 10.1021/la060057k
  • Kanel SR, Manning B, Charlet L, Choi H. Removal of Arsenic (III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol. 2005;39:1291–1298. doi: 10.1021/es048991u
  • Ponder SM, Darab JG, Mallouk TE. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol. 2000;34:2564–2569. doi: 10.1021/es9911420
  • Kanel SR, Grenèche J-M, Choi H. Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol. 2006;40:2045–2050. doi: 10.1021/es0520924
  • Wu D, Shen Y, Ding A, Qiu M, Yang Q, Zheng S. Phosphate removal from aqueous solutions by nanoscale zero-valent iron. Environ Technol. 2013;34:2663–2669. doi: 10.1080/09593330.2013.786103
  • Park H, Park YM, Oh SK, You KM, Lee SH. Enhanced reduction of nitrate by supported nanoscale zero-valent iron prepared in ethanol-water solution. Environ Technol. 2009;30:261–267. doi: 10.1080/09593330802596705
  • Choi JH, Shin WS, Choi SJ, Kim YH. Reductive denitrification using zero-valent iron and bimetallic iron. Environ Technol. 2009;30:939–946. doi: 10.1080/09593330902988729
  • Liu H, Guo M, Zhang Y. Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater. Environ Technol. 2014;35:917–924. doi: 10.1080/09593330.2013.856926
  • Li L, Fan MH, Brown RC, Van Leeuwen JH, Wang JJ, Wang WH, Song YH, Zhang PY. Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit Rev Environ Sci Tech. 2006;36:405–431. doi: 10.1080/10643380600620387
  • Crane RA, Scott TB. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater. 2012;211–212:112–125. doi: 10.1016/j.jhazmat.2011.11.073
  • Tratnyek PG, Johnson RL. Nanotechnologies for environmental cleanup. Nano Today. 2006;1:44–48. doi: 10.1016/S1748-0132(06)70048-2
  • Tiraferri A, Chen KL, Sethi R, Elimelech M. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci. 2008;324:71–79. doi: 10.1016/j.jcis.2008.04.064
  • Yang GCC, Tu HC, Hung CH. Stability of nanoiron slurries and their transport in the subsurface environment. Sep Purif Technol. 2007;58:166–172. doi: 10.1016/j.seppur.2007.07.018
  • He F, Zhao DY, Liu JC, Roberts CB. Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res. 2007;46:29–34. doi: 10.1021/ie0610896
  • Schrick B, Hydutsky BW, Blough JL, Mallouk TE. Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater. 2004;16:2187–2193. doi: 10.1021/cm0218108
  • Kanel SR, Choi H. Transport characteristics of surface-modified nanoscale zero-valent iron in porous media. Water Sci Technol. 2007;55:157–162. doi: 10.2166/wst.2007.002
  • Hydutsky BW, Mack EJ, Beckerman BB, Skluzacek JM, Mallouk TE. Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ Sci Technol. 2007;41:6418–6424. doi: 10.1021/es0704075
  • Saleh N, Sirk K, Liu YQ, Phenrat T, Dufour B, Matyjaszewski K, Tilton RD, Lowry GV. Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environ Eng Sci. 2007;24:45–57. doi: 10.1089/ees.2007.24.45
  • Comba S, Dalmazzo D, Santagata E, Sethi R. Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. J Hazard Mater. 2011;185:598–605. doi: 10.1016/j.jhazmat.2010.09.060
  • Tiraferri A, Sethi R. Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J Nanopart Res. 2009;11:635–645. doi: 10.1007/s11051-008-9405-0
  • Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O'Hara S, Krug T, Major D, Yoon WS, Gavaskar A, Holdsworth T. Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ Sci Technol. 2005;39:1309–1318. doi: 10.1021/es0490018
  • Cheng Y, Lu M, Jiao C, Liu H-J. Preparation of stabilized nano zero-valent iron particles via a rheological phase reaction method and their use in dye decolourization. Environ Technol. 2013;34:445–451. doi: 10.1080/09593330.2012.698652
  • Jia H, Wang C. Comparative studies on montmorillonite-supported zero-valent iron nanoparticles produced by different methods: reactivity and stability. Environ Technol. 2013;34:25–33. doi: 10.1080/09593330.2012.679698
  • Guerrero-Martinez A, Perez-Juste J, Liz-Marzan LM. Recent progress on silica coating of nanoparticles and related nanomaterials. Adv Mater. 2010;22:1182–1195. doi: 10.1002/adma.200901263
  • Bergna HE, Roberts WO. Colloidal silica: fundamentals and applications. Boca Raton, FL: CRC Taylor & Francis; 2006.
  • Vigil G, Xu ZH, Steinberg S, Israelachvili J. Interactions of silica surfaces. J Colloid Interf Sci. 1994;165:367–385. doi: 10.1006/jcis.1994.1242
  • Ohmori M, Matijević E. Preparation and properties of uniform coated colloidal particles. VII. Silica on hematite. J Colloid Interf Sci. 1992;150:594–598. doi: 10.1016/0021-9797(92)90229-F
  • Philippini V, Naveau A, Catalette H, Leclercq S. Sorption of silicon on magnetite and other corrosion products of iron. J Nucl Mater. 2006;348:60–69. doi: 10.1016/j.jnucmat.2005.09.002
  • Jordan N, Marmier N, Lomenech C, Giffaut E, Ehrhardt JJ. Sorption of silicates on goethite, hematite, and magnetite: experiments and modelling. J Colloid Interf Sci. 2007;312:224–229. doi: 10.1016/j.jcis.2007.03.053
  • Bruce IJ, Taylor J, Todd M, Davies MJ, Borioni E, Sangregorio C, Sen T. Synthesis, characterisation and application of silica-magnetite nanocomposites. J Magn Magn Mater. 2004;284:145–160. doi: 10.1016/j.jmmm.2004.06.032
  • Ni XM, Zheng Z, Hu X, Xiao XK. Silica-coated iron nanocubes: preparation, characterization and application in microwave absorption. J Colloid Interf Sci. 2010;341:18–22. doi: 10.1016/j.jcis.2009.09.017
  • Zheng TH, Zhan JJ, He JB, Day C, Lu YF, Mcpherson GL, Piringer G, John VT. Reactivity characteristics of nanoscale zerovalent iron-silica composites for trichloroethylene remediation. Environ Sci Technol. 2008;42:4494–4499. doi: 10.1021/es702214x
  • Filip J, Zboril R, Schneeweiss O, Zeman J, Cernik M, Kvapil P, Otyepka M. Environmental applications of chemically pure natural ferrihydrite. Environ Sci Technol. 2007;41:4367–4374. doi: 10.1021/es062312t
  • Koch C, Ovid'ko I, Seal S. S. V. Structural nanocrystalline materials: fundamentals and applications. 1st ed. New York: Cambridge University Press; 2007.
  • Phenrat T, Long TC, Lowry GV, Veronesi B. Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol. 2009;43:195–200. doi: 10.1021/es801955n
  • Miller DJ, Biesinger MC, McIntyre NS. Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: one possible mechanism for surface contamination? Surf Interf Anal. 2002;33:299–305. doi: 10.1002/sia.1188
  • Zhulina EB, Borisov OV, Priamitsyn VA. Theory of steric stabilization of colloid dispersions by grafted polymers. J Colloid Interf Sci. 1990;137:495–511. doi: 10.1016/0021-9797(90)90423-L
  • Gun'ko VM, Zarko VI, Leboda R, Chibowski E. Aqueous suspension of fumed oxides: particle size distribution and zeta potential. Adv Colloid Interfac. 2001;91:1–112. doi: 10.1016/S0001-8686(99)00026-3
  • Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol. 2007;41:284–290. doi: 10.1021/es061349a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.