323
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Photocatalytic reduction of hexavalent chromium with illuminated amorphous FeOOH

, , &
Pages 1132-1140 | Received 21 Jan 2014, Accepted 28 May 2014, Published online: 09 Dec 2014

References

  • Yang JK, Lee SM. Removal of Cr(VI) and humic acid by using TiO2 photocatalysis. Chemosphere. 2006;63: 1677–1684. doi: 10.1016/j.chemosphere.2005.10.005
  • Reyhanitabar A, Alidokht L, Khataee AR, Oustan S. Application of stabilized Fe0 nanoparticles for remediation of Cr(VI)-spiked soil. Eur J Soil Sci. 2012;63:724–732. doi: 10.1111/j.1365-2389.2012.01447.x
  • Shirzad Siboni M, Samadi MT, Yang JK, Lee SM. Photocatalytic reduction of Cr(VI) and Ni(II) in aqueous solution by synthesized nanoparticle ZnO under ultraviolet light irradiation: a kinetic study. Environ Technol. 2011;32:1573–1579. doi: 10.1080/09593330.2010.543933
  • Khalil LB, Mourad WE, Rophael MW. Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Appl Catal. B. 1998;17:267–273. doi: 10.1016/S0926-3373(98)00020-4
  • Shams Khorramabadi G, Darvishi Cheshmeh Soltani R, Rezaee A, Khataee AR, Jonidi Jafari A. Utilisation of immobilised activated sludge for the biosorption of chromium(VI). Can J Chem Eng. 2012;90:1539–1546. doi: 10.1002/cjce.20661
  • Katz SA, Salem H. The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol. 1993;13:217–224. doi: 10.1002/jat.2550130314
  • Memon JR, Memon SQ, Bhanger MI, Khuhawar MY. Banana peel: a green and economical sorbent for Cr(III) removal. Anal Environ Chem. 2008;9:20–25.
  • Kobya M. Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies. Bioresour Technol. 2004;91:317–321. doi: 10.1016/j.biortech.2003.07.001
  • Ku Y, Jung IL. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 2001;35:135–142. doi: 10.1016/S0043-1354(00)00098-1
  • Liu Z, Wang G, Zhao X. Removal of Cr(VI) from aqueous solution using ultrafine coal fly ash. J Wuhan Univ Technol Mater Sci Ed. 2010;25:323–327. doi: 10.1007/s11595-010-2323-x
  • Schrank SG, Jos HJ, Moreira RFPM. Simultaneous photocatalytic Cr(VI) reduction and dye oxidation in a TiO2 slurry reactor. J Photochem Photobiol A. 2002;147:71–76. doi: 10.1016/S1010-6030(01)00626-8
  • Selli E, De Giorgi A, Bidoglio G. Humic acid-sensitized photoreduction of Cr(VI) on ZnO particles. Environ Sci Technol. 1996;30:598–604. doi: 10.1021/es950368+
  • Farrokhi M, Yang J-K, Lee S-M, Shirzad-Siboni M. Effect of organic matter on cyanide removal by illuminated titanium dioxide or zinc oxide nanoparticles. Iran J Environ Health Sci Eng. 2013;11:2–8. doi: 10.1186/2052-336X-11-23
  • Chakrabarti S, Chaudhuri B, Bhattacharjee S, Ray AK, Dutta BK. Photo-reduction of hexavalent chromium in aqueous solution in the presence of zinc oxide as semiconductor catalyst. Chem Eng J. 2009;153:86–93. doi: 10.1016/j.cej.2009.06.021
  • Chen D, Ray AK. Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem Eng Sci. 2001;56:1561–1570. doi: 10.1016/S0009-2509(00)00383-3
  • Chenthamarakshan CR, Rajeshwar K, Wolfrum EJ. Heterogeneous photocatalytic reduction of Cr(VI) in UV-irradiated titania suspensions: effect of protons, ammonium ions, and other interfacial aspects. Langmuir. 2000;16:2715–2721. doi: 10.1021/la9911483
  • Mazeina L, Navrotsky A. Enthalpy of water adsorption and surface enthalpy of goethite (α-FeOOH) and hematite (α-Fe2O3). Chem Mater. 2007;19:825–833. doi: 10.1021/cm0623817
  • Baltrusaitis J, Cwiertny DM, Grassian VH. Adsorption of sulfur dioxide on hematite and goethite particle surfaces. Phys Chem Chem Phys. 2007;9:5542–5554. doi: 10.1039/b709167b
  • Chen YH, Li FA. Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts. J Colloid Interface Sci. 2010;347:277–281. doi: 10.1016/j.jcis.2010.03.050
  • Amstaetter K, Borch T, Larese-Casanova P, Kappler A. Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ Sci Technol. 2009;44:102–108. doi: 10.1021/es901274s
  • Lemaire BJ, Davidson P, Ferr J, Jamet JP, Panine P, Dozov I, Jolivet JP. Outstanding magnetic properties of nematic suspensions of goethite (α-FeOOH) nanorods. Phys Rev Lett. 2002;88:125507. doi: 10.1103/PhysRevLett.88.125507
  • He J, Ma W, He J, Zhao J, Yu JC. Photooxidation of azo dye in aqueous dispersions of H2O2/α-FeOOH. Appl Catal B. 2002;39:211–220. doi: 10.1016/S0926-3373(02)00085-1
  • Wang Y, Ma J, Chen K. Adsorptive removal of Cr(VI) from wastewater by α-FeOOH hierarchical structure: kinetics, equilibrium and thermodynamics. Phys Chem Chem Phys. 2013;15:19415–19421. doi: 10.1039/c3cp52867g
  • Shirzad-Siboni M, Farrokhi M, Darvishi Cheshmeh Soltani R, Khataee A, Tajassosi S. Photocatalytic reduction of hexavalent chromium over ZnO nanorods immobilized on Kaolin. Ind Eng Chem Res. 2014;53:1079–087.
  • Shirzad-Siboni M, Khataee A, Joo SW. Kinetics and equilibrium studies of removal of an azo dye from aqueous solution by adsorption onto scallop. J Ind Eng Chem. 2014;20:610–615. doi: 10.1016/j.jiec.2013.05.023
  • APHA, AWWA, WEF. Standard methods for the examination of water and wastewater. 20th ed. Washington, DC; 2000.
  • Shirzad-Siboni M, Samarghandi M, Yang J-K, Lee S-M. Photocatalytic removal of reactive black-5 dye from aqueous solution by UV irradiation in aqueous TiO2: equilibrium and kinetics study. J Adv Oxid Technol. 2011;14:302–307.
  • Shirzad Siboni M, Samadi MT, Yang JK, Lee SM. Photocatalytic removal of Cr(VI) and Ni(II) by UV/TiO2: kinetic study. Desalin Water Treat. 2012;40:77–83. doi: 10.1080/19443994.2012.671144
  • Sun B, Reddy EP, Smirniotis PG. Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis. Environ Sci Technol. 2005;39:6251–6259. doi: 10.1021/es0480872
  • Daneshvar N, Rasoulifard MH, Khataee AR, Hosseinzadeh F. Removal of C.I. acid orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder. J Hazard Mater. 2007;143:95–101. doi: 10.1016/j.jhazmat.2006.08.072
  • Daneshvar N, Salari D, Khataee AR. Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J Photochem Photobiol A. 2003;157:111–116. doi: 10.1016/S1010-6030(03)00015-7
  • Liu SX. Removal of copper(VI) from aqueous solution by Ag/TiO2 photocatalysis. Bull Environ Contam Toxicol. 2005;74:706–714. doi: 10.1007/s00128-005-0640-0
  • Shirzad-Siboni M, Samarghandi MR, Azizian S, Kim WG, Lee SM. The removal of hexavalent chromium from aqueous solutions using modified holly sawdust: equilibrium and kinetics studies. Environ Eng Res. 2011;16:55–60. doi: 10.4491/eer.2011.16.2.55
  • Hall PG, Clarke NS, Maynard SCP. Inelastic neutron scattering (TFXA) study of hydrogen modes in α-FeOOH (Goethite) and γ-FeOOH (Lepidocrocite). J Phys Chem. 1995;99:5666–5673. doi: 10.1021/j100015a059
  • Kosmulski M, Maczka E. Dilatometric study of the adsorption of heavy-metal cations on goethite. Langmuir. 2004;20:2320–2323. doi: 10.1021/la0356957
  • Khataee A, Daneshvar N, Rasoulifard MH, Hosseinzadeh F. Removal of C.I. acid orange 7 from aqueous solution by UV irradiation in the presence of ZnO. J Hazard Mater. 2007;143:95–101. doi: 10.1016/j.jhazmat.2006.08.072
  • Lee SM, Lee TW, Choi BJ, Yang JK. Treatment of Cr(VI) and phenol by illuminated TiO2. J Environ Sci Health Part A. 2003;38:2219–2228. doi: 10.1081/ESE-120023356
  • Lin WY, Wei C, Rajeshwar K. Photocatalytic reduction and immobilization of hexavalent chromium at titanium dioxide in aqueous basic media. J Electrochem Soc India. 1993;140:2477–2482. doi: 10.1149/1.2220847
  • Daneshvar N, Khataee A. Removal of azo dye CI acid red 14 from contaminated water using fenton, UV/H2O2, UV/H2O2/Fe(II), UV/H2O2/Fe(III) and UV/H2O2/Fe(III)/oxalate processes: a comparative study. J Environ Sci Health Part A. 2006;41:315. doi: 10.1080/10934520500423196
  • Yang GC, Chan S-W. Photocatalytic reduction of chromium(VI) in aqueous solution using dye-sensitized nanoscale ZnO under visible light irradiation. J Nanopart Res. 2009;11:221–230. doi: 10.1007/s11051-008-9423-y
  • Yang JK, Lee SM, Farrokhi M, Giahi O, Shirzad Siboni M. Photocatalytic removal of Cr(VI) with illuminated TiO2. Desalin Water. Treat. 2012;46:375–380. doi: 10.1080/19443994.2012.677564
  • Daneshvar N, Aleboyeh A, Khataee AR. The evaluation of electrical energy per order (EEo) for photooxidative decolorization of four textile dye solutions by the kinetic model. Chemosphere. 2005;59:761–767. doi: 10.1016/j.chemosphere.2004.11.012
  • Khataee AR, Kasiri MB. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: influence of the chemical structure of dyes. J Mol Catal A: Chem. 2010;328:8–26. doi: 10.1016/j.molcata.2010.05.023
  • Samarghandi MR, Yang JK, Lee SM, Giahi O, Shirzad-Siboni M. Effect of different type of organic compounds on the photocatalytic reduction of Cr(VI) in presence of ZnO nanoparticles. Desalin Water Treat. 2013:1–8.
  • Yang JK, Lee SM, Shirzad-Siboni M. Effect of different types of organic compounds on the photocatalytic reduction of Cr(VI). Environ Technol. 2012;33:2027–2032. doi: 10.1080/09593330.2012.655325
  • Yang JK, Davis AP. Photocatalytic oxidation of Cu(II)-EDTA with illuminated TiO2 mechanisms. Environ Sci Technol. 2000;34:3796–3801. doi: 10.1021/es990875h
  • Fu H, Quan X. Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite: FTIR observation. Chemosphere. 2006;63:403–410. doi: 10.1016/j.chemosphere.2005.08.054

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.