448
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon

, , &
Pages 1499-1509 | Received 30 Jul 2014, Accepted 27 Nov 2014, Published online: 03 Jan 2015

References

  • Richardson SD, Thruston AD, Caughran TV, Chen PH, Collette TW, Schenck KM, Lykins BW Jr, Rav-Acha C, Glezer V. Identification of new drinking water disinfection by-products from ozone, chlorine dioxide, chloramine, and chlorine. Water Air Soil Poll. 2000;123:95–102. doi: 10.1023/A:1005265509813
  • Korn C, Andrews RC, Escobar MD. Development of chlorine dioxide-related by product models for drinking water treatment. Water Res. 2002;36:330–342. doi: 10.1016/S0043-1354(01)00194-4
  • Schmidt W. Using chlorine dioxide for drinking water disinfection by the application of the chlorine/chlorite process. Acta Hydroch. Hydrob. 2004;32:48–60. doi: 10.1002/aheh.200200515
  • Gagnon GA, Randa JL, O'Learyb KC, Rygela AC, Chauretc C, Andrews RC. Disinfectant efficacy of chlorite and chlorine dioxide in drinking water biofilms. Water Res. 2005;39:1809–1817. doi: 10.1016/j.watres.2005.02.004
  • US Environmental Protection Agency. National primary drinking water regulations: stage 2 disinfectants and disinfection byproducts rule; final rule. 2006;71:388–493.
  • Krasner SW, Weinberg HS, Richardson SD, Pastor SJ, Chinn R, Sclimenti MJ, Onstad GD, Thruston AD Jr. Occurrence of a new generation of disinfection byproducts. Environ. Sci. Technol. 2006;40:7175–7185. doi: 10.1021/es060353j
  • Wang P, He YL, Huang CH. Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: reaction kinetics, product and pathway evaluation. Water Res. 2010;44:5989–5998. doi: 10.1016/j.watres.2010.07.053
  • Swietlik J, Raczyk-Stanislawiak U, Bilozor S, Ilecki W, Nawrocki J. Effect of oxidation with chlorine dioxide on the adsorption of natural organic matter on granular activated carbon. Pol. J. Environ. Stud. 2002;11:435–439.
  • Collivignarelli C, Sorlini S. Trihalomethane, chlorite and bromate formation in drinking water oxidation of Italian surface waters. J. Water Supply, Res. and Tech. Aqua. 2004;53:159–168.
  • Official Journal of Italy, D. Lgs. 31/2001. Implementation of Directive 98/83/EC on drinking water quality.
  • Italian Decree 5 September 2006. Modification of the Official Journal of Italy, Legislative decree 31/ 2001.
  • WHO (World Health Organization). Guidelines for drinking water quality. 4th ed. Geneva: WHO Press; 2011.
  • Chang CY, Hsieh YH, Lin YM, Hu PY, Liu CC, Wang KH. The organic precursors affecting the formation of disinfection by-products with chlorine dioxide. Chemosphere. 2001;44:1153–1158. doi: 10.1016/S0045-6535(00)00285-X
  • Yee LF, Pauzi MdA. Dissolved organic matter and its impact on the chlorine demand of treated water. Malaysian J. Anal. Sci. 2006;10(2):243–250.
  • Matilainen A, Vepsalainen M, Sillanpaa M. Natural organic matter removal by coagulation during drinking water treatment: a review. Adv. Colloid Interface Sci. 2010;159:189–197. doi: 10.1016/j.cis.2010.06.007
  • Swietlik J, Raczyk-Stanislawiak U, Bilozor S, Ilecki W, Nawrocki J. Adsorption of natural organic matter oxidized with ClO2 on granular activated carbon. Water Res. 2002;36:2328–2336. doi: 10.1016/S0043-1354(01)00451-1
  • Matilainen A, Iivari P, Sallanko J, Heiska E, Tuhkanen T. The role of ozonation and activated carbon filtration in the natural organic matter removal from drinking water. Environ. Technol. 2006;27:1171–1180. doi: 10.1080/09593332708618731
  • Treguer R, Couvert A, Wolbert D, Suty H, Randon G. Particulate products and new polymers for a more efficient removal of dissolved organic matter in drinking water resources. Environ. Technol. 2007;28:861–869. doi: 10.1080/09593332808618850
  • Cheng W, Dastgheib SA, Karanfil T. Adsorption of dissolved natural organic matter by modified activated carbons. Water Res. 2005;39:2281–2290. doi: 10.1016/j.watres.2005.01.031
  • Velten S, Knappe DRU, Traber J, Kaiser HP, von Gunten U, Boller M, Meylan S. Characterization of natural organic matter adsorption in granular activated carbon adsorbers. Water Res. 2011;45:3951–3959. doi: 10.1016/j.watres.2011.04.047
  • Newcombe G. Charge vs. porosity – Some influences on the adsorption of natural organic matter (NOM) by activated carbon. Water Sci. Technol. 1999;40:191–198. doi: 10.1016/S0273-1223(99)00656-3
  • Schreiber B, Brinkmann T, Schmalz V, Worch E. Adsorption of dissolved organic matter onto activated carbon – the influence of temperature, absorption wavelength, and molecular size. Water Res. 2005;39:3449–3456. doi: 10.1016/j.watres.2005.05.050
  • van Lienden C, Shan L, Rao S, Ranieri E, Young TM. Metals removal from stormwater by commercial and non-commercial granular activated carbons. Water Environ. Res. 2010;82:351–356. doi: 10.2175/106143009X12487095236874
  • Ranieri E, Swietlik J. DBPs control in European drinking water treatment plants using chlorine dioxide: Two case studies. J Environ. Eng. Landsc. 2010;18:85–91. doi: 10.3846/jeelm.2010.10
  • Álvarez-Uriarte JI, Iriarte-Velasco U, Chimeno-Alanís N, González-Velasco JR. The effect of mixed oxidants and powdered activated carbon on the removal of natural organic matter. J. Hazard. Mater. 2010;181:426–431. doi: 10.1016/j.jhazmat.2010.05.028
  • Christman RF, Norwood DL, Seo Y, Frimmel FH. Oxidative degradation of humic substances from freshwater environments. In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS, editors. Humic substances II. New York: John Wiley; 1989. p. 34–67.
  • Traina SJ, Novak J, Smeck NE. An ultraviolet absorbance method of estimating the percent aromatic carbon content in humic acids. J. Environ. Qual. 1990;19:151–153. doi: 10.2134/jeq1990.00472425001900010023x
  • Novak JM, Mills GL, Bertsch PM. Estimating the percent aromatic carbon in soil and aquatic humic substances using ultraviolet absorbance spectroscopy. J. Environ. Qual. 1992;21:144–147. doi: 10.2134/jeq1992.00472425002100010022x
  • Chin YP, Aiken G, O'Loughlin E. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ. Sci. Technol. 1994;28:1853–1858. doi: 10.1021/es00060a015
  • Hautala K, Peuravuori J, Pihlaja K. Measurement of aquatic humus content by spectroscopy analyses. Water Res. 2000;34:246–258. doi: 10.1016/S0043-1354(99)00137-2
  • Korshin GV, Li CW, Benjamin MN. Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory. Water Res. 1997;31:1787–1795. doi: 10.1016/S0043-1354(97)00006-7
  • Dobbs RA, Wise RH, Dean RB. The use of ultraviolet absorbance for monitoring the total organic carbon content of water and wastewater. Water Res. 1972;6:1173–1180. doi: 10.1016/0043-1354(72)90017-6
  • Mrkva M. Evaluation of correlations between absorbance at 254 nm and COD of river waters. Water Res. 1983;17:231–235. doi: 10.1016/0043-1354(83)90104-5
  • Reynolds DM, Ahmad SR. Rapid and direct determination of wastewater BOD values using a fluorescence technique. Water Res. 1997;31:2012–2018. doi: 10.1016/S0043-1354(97)00015-8
  • Baghoth SA, Sharma SK, Amy GL. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC. Water Res. 2011;45:797–809. doi: 10.1016/j.watres.2010.09.005
  • Matilainen A, Gjessing ET, Lahtinen T, Hed L, Bhatnagar A, Sillanpaa M. An overview of the methods used in the characterization of antural organic matter (NOM) in relation to drinking water treatment. Chemosphere. 2011;83:1431–1442. doi: 10.1016/j.chemosphere.2011.01.018
  • Swietlik J, Raczyk-Stanislawiak U, Bilozor S, Ilecki W, Nawrocki J. Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Res. 2004;38:547–558. doi: 10.1016/j.watres.2003.10.034
  • Yan M, Wang D, Ma X, Ni J, Zhang H. THMs precursor removal by an integrated process of ozonation and biological granular activated carbon for typical Northern China water. Sep. Purif. Technol. 2010;72:263–268. doi: 10.1016/j.seppur.2010.02.015
  • ASTM D3860-98. Standard practice for determination of adsorptive capacity of activated carbon by aqueous phase isotherm technique. West Conshohocken, PA: ASTM International; 2014.
  • APAT IRSA CNR 4080. Official analytical method – Free active chlorine. Roma, IT: APAT; 2003.
  • UNI EN ISO 10304-4. Water quality. Determination of dissolved anions by ion chromatography in liquid phase. Determination of chlorates, chlorides and chlorites in water with a low level of contamination. Geneva: ISO; 2001.
  • UNI EN ISO 8467. Official analytical method. Determination of the permanganate index. Geneva: ISO; 1997.
  • APAT IRSA CNR 3020. Determination of chemical elements by means of emission spectroscopy with plasma source (ICP-OES). Roma, IT: APAT; 2003.
  • APAT IRSA CNR 4020. Determination of anions (fluoride, chloride, nitrite, bromide, nitrate, phosphate and sulfate) by ion chromatography. Roma, IT: APAT; 2003.
  • Malik R, Ramteke DS, Wate SR. Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Manage. 2007;27:1129–1138. doi: 10.1016/j.wasman.2006.06.009
  • Sorlini S, Gialdini F, Biasibetti M, Collivignarelli C. Influence of drinking water treatments on chlorine dioxide consumption and chlorite/chlorate formation. Water Res. 2014;54:44–52. doi: 10.1016/j.watres.2014.01.038
  • Korshin G, Chow CWK, Fabris R, Drikas M. Absorbance spectroscopy-based examination of effects of coagulation on the reactivity of fractions of natural organic matter with varying apparent molecular weights. Water Res. 2009;43:1541–1548. doi: 10.1016/j.watres.2008.12.041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.