293
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Valorization of agricultural wastes as dye adsorbents: characterization and adsorption isotherms

, &
Pages 1913-1923 | Received 01 May 2014, Accepted 29 Jan 2015, Published online: 18 Mar 2015

References

  • Sankar N, Kumar N, Bannerjee S, Aikat K. Bioethanol production from agricultural wastes: an overview. Renew Energ. 2012;37:19–27. doi: 10.1016/j.renene.2011.06.045
  • Talebnia F, Karakasshev D, Angelidaki I. Production of bioethanol from wheat straw: an overview on pretreatment hydrolysis and fermentation. Bioresour Technol. 2010;101:4744–4753. doi: 10.1016/j.biortech.2009.11.080
  • Limayem A, Ricke S. Review: lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energ Combust. 2012;38:449–467. doi: 10.1016/j.pecs.2012.03.002
  • Karimi K, Kheradmandinia S, Taherzadeh MJ. Conversion of rice straw to sugars by dilute acid hydrolysis. Biomass Bioenerg. 2006;30:247–253. doi: 10.1016/j.biombioe.2005.11.015
  • U.S. Department of Energy Biomass Program. 2009. Available from: http://www1.eere.energy.gov/biomass/pdfs/biomass_deep_dive_pir.pdfhttp://www1.eere.energy.gov/biomass/pdfs/biomass_deep_dive_pir.pdf. 2009.
  • U.S. Department of Energy, U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. 2012. Available from: http://www1.eere.energy.gov/bioenergy/pdfs/billion_ton_update.pdfhttp://www1.eere.energy.gov/bioenergy/pdfs/billion_ton_update.pdf. 2011.
  • Hertz E, De la Cerda J, López M. Straw availability in the stubbles of tree provinces of Chile. Agric Téc. 2006;66:393–401.
  • Taladriz A, Schwember A. Cereales en las zonas centro-sur y sur de Chile-¿Qué hacer con los rastrojos? Agronomía y Forestal. 2012;46:24–29.
  • Li LJ, Wang Y, Zhang Q, Li JX, Yang XG, Jin J. Wheat Straw burning and its associated impacts on Beijing air quality. Sci China Ser D-Earth Sci. 2008;51:403–414. doi: 10.1007/s11430-008-0021-8
  • Levine JS, Cofer WR, Cahoon DR, Winstead DL. Biomass burning: a driver for global change. Environ Sci Technol. 1995;29:120–125.
  • Pecha B, Chambers E, Levengood C, Bair J, Liaw SS, Leachman J, Garcia­Perez M, Ha S. Novel concept for the conversion of wheat straw into hydrogen, heat, and power: a preliminary design for the conditions of Washington State University. Int J Hydrogen Energ. 2013;38:4967–4974. doi: 10.1016/j.ijhydene.2013.02.005
  • Shrivastava B, Nandal P, Sharma A, Jain KK, Khasa YP, Das TK, Mani V, Kewalramani, Kundu SS, Kuhad RC. Solid state bioconversion of wheat straw into digestible and nutritive ruminant feed by Ganoderma sp. rckk02. Bioresour Technol. 2012;107:347–351. doi: 10.1016/j.biortech.2011.12.096
  • Demirbas A. Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J Hazard Mater. 2009;167:1–9. doi: 10.1016/j.jhazmat.2008.12.114
  • Dias JM, Alvim-Ferraz MCM, Almeida MF, Rivera-Utrilla J, Sánchez-Polo M. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J Environ Manage. 2007;85:833–846. doi: 10.1016/j.jenvman.2007.07.031
  • Assareh R, Zahiri HS, Noghabi KA, Aminzadeh S, Khaniki GB. Characterization of newly isolated Geobacillus sp. T1, the efficient cellulose-producer on untreated barley and wheat straws. Bioresour Technol. 2012;120:99–105. doi: 10.1016/j.biortech.2012.06.027
  • Deniz I, Kirci H, Ates S. Optimisation of wheat straw triticum drum kraft pulping. Ind Crop Prod. 2004;19:237–243. doi: 10.1016/j.indcrop.2003.10.011
  • Chen H, Wang F, Zhang C, Shi Y, Jin G, Yuan S. Preparation of nano-silica materials: the concept from wheat straw. J Non-Cryst Solids. 2012;356:2781–2785. doi: 10.1016/j.jnoncrysol.2010.09.051
  • Kuan CY, Yuen KH, Bhat R, Liong MT. Physicochemical characterization of alkali treated fractions from corncob and wheat straw and the production of nanofibres. Food Res Int. 2011;44:2822–2829. doi: 10.1016/j.foodres.2011.06.023
  • Jiménez L, Rodriguez A. Valorization of agricultural residues by fractionation of their components. Open Agr J. 2010;4:125–134. doi: 10.2174/1874331501004010125
  • Del Río JC, Rencoret J, Prinsen P, Martinez AT, Ralph J. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleaveage methods. J Agr Food chem. 2012;60:5922–5935. doi: 10.1021/jf301002n
  • Li Z, Zhai H, Zhang Y, Yu L. Cell morphology and chemical characteristics of corn stover fractions. Ind Crop Prod. 2012;37:130–136. doi: 10.1016/j.indcrop.2011.11.025
  • Tuyen VD, Cone JW, Baars JJP, Sonnenberg AS, Mand Hendriks WH. Fungal strain and incubation period affect chemicalcomposition and nutrient availability of wheat straw for rumen fermentation. Bioresour Technol. 2012;111:336–342. doi: 10.1016/j.biortech.2012.02.001
  • Snelders J, Dornez E, Benjelloun-Mlayah B, Huijgen WJJ, de Wild PJ, Gosselink RJA, Gerritsma J, Courtin CM. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process. Bioresour Technol. 2014;156:275–282. doi: 10.1016/j.biortech.2014.01.069
  • Sud D, Mahajan G, Kaur MP. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – a review. Bioresour Technol. 2008;99:6017–6027. doi: 10.1016/j.biortech.2007.11.064
  • Dang VBH, Doan HD, Dang-Vu T, Lohi A. Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw. Bioresour Technol. 2009;100:211–219. doi: 10.1016/j.biortech.2008.05.031
  • Faroop U, Kozinski JA, Khan MA, Athar M. Biosorption of heavy metal ions using wheat based biosorbents – a review of the recent literature. Bioresour Technol. 2010;101:5043–5053. doi: 10.1016/j.biortech.2010.02.030
  • Ma Z, Li Q, Yue Q, Gao B, Li W, Xu X, Zhong Q. Adsorption removal of ammonium and phosphate from water by fertilizar controlled released agent prepared from wheat straw. Chem Eng J. 2011;171:305–311. doi: 10.1016/j.cej.2011.05.027
  • Rashed MN. Adsorption technique for the removal of organic pollutants from water and wastewater. In: Nageeb Rashed M, editor. Organic pollutants – monitoring, risk and treatment. 2013; ISBN 978-953-51-0948-8.
  • Shah K. Biodegradation of azo dye compounds. Int Res J Biochem Biotechnol. 2014;1(2):005–013. Available from: https://www.academia.edu/9005666/Biodegradation_of_Azo_Dye_compoundshttps://www.academia.edu/9005666/Biodegradation_of_Azo_Dye_compounds
  • Saratale RG, Saratale GD, Chang JS and Govindwar SP. Decolorization and degradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation. 2010;21:999–1015. doi: 10.1007/s10532-010-9360-1
  • Hao OJ, Kim H, Chiang PC. Decolourization of wastewater. Crit Rev Env Sci Tec. 2000;30:449–505. doi: 10.1080/10643380091184237
  • Puvaneswari N, Muthukrishnan J, Gunasekaran P. Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol. 2006;44:618–626.
  • Khehra MS, Saini HS, Sharma DK, Chadha BS, Chimni SS. Biodegradation of azo dye C.I. Acid Red 88 by an anoxic-aerobic sequential bioreactor. Dyes Pigments. 2006;70:1–7. doi: 10.1016/j.dyepig.2004.12.021
  • Ratna and Padhi BS. Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. Int J Environ Sci. 2012;3(3):940–955.
  • Golka K, Kopps S, Myslak ZW. Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol Lett. 2004;151:203–210. doi: 10.1016/j.toxlet.2003.11.016
  • Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green. Aquat Toxicol. 2004;66:319–329. doi: 10.1016/j.aquatox.2003.09.008
  • Andersen WC, Turnipseed SB, Karbiwnyk CM, Lee RH, Clark SB, Rowe WD, Madson MR, Miller KE. Multiresidue method for the triphenylmethane dyes in fish: Malachite green, crystal (gentian) violet, and brilliant green. Anal Chim Acta. 2009;637:279–289. doi: 10.1016/j.aca.2008.09.041
  • Ayed L, Kouidhi B, Bekir K, Bakhrouf A. Biodegradation of azo and triphenylmethanes dyes: cytotoxicity of dyes, slime production and enzymatic activities of Staphylococcus epidermidis isolated from industrial wastewater. Afr J Microbiol Res. 2013;49:5550–5557.
  • Rangabhashiyam S, Anu N, Selvaraju N. Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents. J Environ Chem Eng. 2013;1:629–641. doi: 10.1016/j.jece.2013.07.014
  • Hameed BH, Krishni RR, Sata SA. A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. J Hazard Mat. 2009;162:305–311. doi: 10.1016/j.jhazmat.2008.05.036
  • Hassanein TF, Koumanova B. Evaluation of adsorption potential of the agricultural waste wheat straw for C.I. Basic Yellow 21. J Univ Chem Technol Metall. 2010;45:407–414.
  • Vucurovic VM, Razmovski RN, Miljic UD, Puskas VS. Removal of cationic and anionic azo dyes from aqueous solutions by adsorption on maize stem tissue. J Taiwan Inst Chem Eng. 2014;45:1700–1708. doi: 10.1016/j.jtice.2013.12.020
  • Zhou L, Huang J, He B, Zhang F, Li H. Peach gum for efficient removal of methylene blue and methyl violet dyes from aqueous solution. Carbohyd Polym. 2014;101:574–581. doi: 10.1016/j.carbpol.2013.09.093
  • Pavan FA, Camacho ES, Lima EC, Dotto GI, Branco VT, Días SL. Formosa papaya seed power(FPSP): preparation, characterization and application as an alternative adsorbent for the removal of crystal violet from aqueous phase. J Environ Chem Eng. 2014;2:230–238. doi: 10.1016/j.jece.2013.12.017
  • Gong R, Zhu S, Zhanga D, Chen J, Ni S, Guan R. Adsorption behavior of cationic dyes on citric acid etherifying wheat straw: kinetics and thermodynamic profile. Desalination. 2008;230:220–228. doi: 10.1016/j.desal.2007.12.002
  • Newcombe G, Hayes R, Drikas M. Granular activated carbon: importance of surface properties in the adsorption of naturally occurring organics. Colloids Surf B. 1993;78:65–71. doi: 10.1016/0927-7757(93)80311-2
  • Boehm HP. Chemical identification of surface groups. Adv Catal. 1966;16:179–274.
  • Langmuir I. The sorption of gases on plane surface of glass, mica and platinum. J Am Chem Soc. 1918;40:1361–1403. doi: 10.1021/ja02242a004
  • Freunlich H. Of the adsorption of gases. Section II. Kinetics and energetic of gas adsorption. Introductory paper to section II. Trans Faraday Soc. 1932;28;195–201. doi: 10.1039/tf9322800195
  • Bajpai SK, Jain A. Equilibrium and thermodynamic studies for adsorption of crystal violet onto spent tea leaves (STL). Water J. 2012;4:51–71. Available from: http://www.waterjournal.org/uploads/vol4/Bajpai/WATER-Vol4-Bajpai.pdfhttp://www.waterjournal.org/uploads/vol4/Bajpai/WATER-Vol4-Bajpai.pdf
  • Xu X, Gao B, Wang W, Yue Q, Wang Y, Ni S. Effect of modifying agents on the preparation and propierties of the new adsorbents from wheat straw. Bioresour Technol. 2010;101:1477–1481. doi: 10.1016/j.biortech.2009.06.064
  • Garlock RB, Chundawat SPS, Balan V, Dale BE. Optimizing harvest of corn stover fractions based on overall sugar yields following ammonia fiber expansion pretreatment and anzymatic hydrolysis. Biotechnol Biofuels. 2009;2(29):1–14. Available from: http://www.biotechnologyforbiofuels.com/content/2/1/29http://www.biotechnologyforbiofuels.com/content/2/1/29
  • Yasin M, Bhutto AW, Bazmi AA, Karim S. Efficient utilization of rice-wheat straw to produce value-added composite products. Intern J Chem Environ Eng. 2010;1:137–143.
  • Adapa P, Tabil L, Schoenau G. Research paper: PH-postharvest technology. Compaction characteristics of barley, canola, oat and wheat straw. Biosist Eng. 2009;104:335–344. doi: 10.1016/j.biosystemseng.2009.06.022
  • Sciba M, Klasnja M Skrbic B. Adsorption of cooper from water by modified agricultural by-products. Desalination. 2008;229:170–180. doi: 10.1016/j.desal.2007.08.017
  • Antongiovanni M, Sargentini C. Variability in chemical composition of straws. Options méditerraneennes-Serie Seminaires. 1991;16:49–53.
  • Prado-Martínez M, Anzaldo-Hernández J, Becerra-Aguilar B, Palacios-Juárez H, Vagas-Radillo JJ, Rentería-Urquiza M. Characterization of maize leaves and sugarcane bagasse to elaborate of a mixed cellulose pulp. Maderas y Bosques. 2012;18(3):37–50.
  • Zheng L, Dang Z, Yi X, Zhang H. Equilibrium and kinetics studies of adsorption of Cd(II) from aqueous solution using modified corn talk. J hazard Mat. 2010;176:650–656. doi: 10.1016/j.jhazmat.2009.11.081
  • Leyva-Ramos R, Bernal-Jacome LA, Acosta-Rodríguez I. Adsorption of cadmium(II) from aqueous solution on natural and oxidized corncob. Sep Purif Technol. 2005;45:41–49. doi: 10.1016/j.seppur.2005.02.005
  • Tan X, Gao B, Xu X, Wang Y, Ling J, Yue Q, Li Q. Perclorate uptake by wheat straw based adsorbent from aqueous solution and its subsequent biological regeneration. Chem Eng J. 2012;211–212:37–45. doi: 10.1016/j.cej.2012.09.044
  • Leyva-Ramos R, Landin-Rodriguez LE, Leyva-Ramos S, Medellin-Castillo NA. Modification of corncob with citric acid to enhance its capacity for adsorbing cadmium(II) from water solution. Chem Eng J. 2012;180:113–120. doi: 10.1016/j.cej.2011.11.021
  • Han R, Zhang L, Song C, Zhang M, Zhu H, Zhang L. Characterization of modified wheat straw, kinetics and equilibrium study about copper ion and methylene blue adsorption in batch mode. Carbohy Polym. 2010;79:1140–1149. doi: 10.1016/j.carbpol.2009.10.054
  • Wei J, Zhu R, Zhu J, Ge F, Yuan P, He H, Ming CH. Simultaneous sorption of cristal violet and 2-naphthol to bentonite with different CECs. J Hazard Mat. 2009;166:195–199. doi: 10.1016/j.jhazmat.2008.11.004
  • Dávila-Jiménez MM, Elizalde-Gonzalez MP, Peláez-Cid AA. Adsorption interaction between natural adsorbents and textile dyes in aqueous solution. Colloid Surface A. 2005;254:105–114. doi: 10.1016/j.colsurfa.2004.11.022
  • Bulut Y, Aydin H. A kinetics and thermodynamic study of methylene blue adsorption on wheat shells. Desalination. 2006;194:259–267. doi: 10.1016/j.desal.2005.10.032
  • Elizalde-González MP, Geyer W, Guevara-Villa RG, Mattusch J, Peláez-Cid AA, Wennrich R. Characterization of an adsorbent prepared from maize waste and adsorption of three classes of textile dyes. Colloid Surface A. 2006;278:89–97. doi: 10.1016/j.colsurfa.2005.11.097
  • Bharathi KS, Ramesh ST. Removal of dyes using agricultural waste as low-cost adsorbents: a review. Appl Water Sci. 2013;3:773–790. doi: 10.1007/s13201-013-0117-y
  • Giles CH, D'silva PA, Huiston AA. A general treatment and classification of the solute adsorption isotherm part. II. Experimental interpretation. J Colloid Interf Sci. 1974;47:766–778. doi: 10.1016/0021-9797(74)90253-7
  • Sepúlveda L, Fernádez K, Contreras E, Palma C. Adsorption of dyes using peat: equilibrium and kinetics studies. Environ Technol. 2004;25:987–996. doi: 10.1080/09593332508618390
  • Baseri JR, Palanisamy PN, Kumar PS. Adsorption of basic dyes from synthetic textile effluent by activated carbon prepared from Thevetia peruviana. Indian J Chem Techn. 2012;19:311–321.
  • Tsai WT, Chang YM, Lai CW, Lo CC. Adsorption of ethyl violet dye in aqueous solution by regeneration spent bleaching earth. J Colloid Interf Sci. 2005;289:333–338. doi: 10.1016/j.jcis.2005.03.087
  • Santhi T, Manonmani S, Vasantha VS, Chang YT. A new alternative adsorbent for the removal of cationic dyes from aqueous solution. Arab J Chem. 2011. doi:10.1016/j.arabjc.2011.06.004.
  • Zhang W, Yan H, Li H, Jiang Z, Dong L, Kan X, Yang H, Li A, Cheng R. Removal of dyes from aqueous solutions by straw based adsorbents: batch and column studies. Chem Eng J. 2011;168:120–127.
  • Wang Y, Zeng L, Ren X, Song H, Wang A. Removal of methyl violet from aqueous solutions using poly(acrylic acid-co-acrylamida)/attapulgite composite. J Environ Sci. 2010;22:7–14. doi: 10.1016/S1001-0742(09)60068-1
  • Chakraborty S, Chowdhury S, Das Saha P. Adsorption of crystal violet from aqueous solution onto NaOH-modified RCE husk. Carbohydr Polym. 2011;86:1533–1541. doi: 10.1016/j.carbpol.2011.06.058
  • Bello OS, Ahmad MA. Coconut (Cocos nucifera) shell based activated carbon for the removal of malachite green dye from aqueous solutions. Sep Sci Technol. 2012;47:903–912. doi: 10.1080/01496395.2011.630335
  • Kumar R, Ahmad R. Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste TGW. Desalinisation. 2011;265:112–118. doi: 10.1016/j.desal.2010.07.040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.