165
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Does fertilizer (N15P15K15) amendment enhance phytoremediation of petroleum-polluted aquatic ecosystem in the presence of water hyacinth (Eichhornia crassipes [Mart.] Solms)?

, , , &
Pages 2502-2514 | Received 18 Nov 2014, Accepted 27 Mar 2015, Published online: 29 Apr 2015

References

  • The Central Intelligence Agency (CIA). World fact book. 12th ed. Nebraska: Potomac Books Incorporated; 2011. 864 p.
  • Ndimele PE, Jimoh AA. Water hyacinth (Eichhornia crassipes [Marts.] Solms) in phytoremediation of heavy metal polluted water of Ologe Lagoon, Lagos, Nigeria. Res J Environ Sci. 2011;5:424–433. doi: 10.3923/rjes.2011.424.433
  • Ndimele PE, Jenyo-Oni A, Ayodele AI, Jimoh AA. The phytoremediation of crude oil-polluted aquatic environment by water hyacinth (Eichhornia crassipes [Mart.] Solms). Afr J Livest Ext. 2010;8:62–65.
  • Okoh AI. Biodegradation alternative in the clean-up of petroleum hydrocarbon pollutants. Biotechnol Mol Biol Rev. 2006;1:38–50.
  • Mendelssohn IA, Lin Q. Sediment subsidy: effects on soil-plant responses in a rapidly submerging coastal salt marsh. Ecol Eng. 2003;21:115–128. doi: 10.1016/j.ecoleng.2003.09.006
  • Ndimele PE. A review on the phytoremediation of petroleum hydrocarbon. Pak J Biol Sci. 2010;13:715–722. doi: 10.3923/pjbs.2010.715.722
  • Gopal B, Sharma KP. Water hyacinth (Eichhornia crassipes), the most troublesome weed of the world. New Delhi: Hindasia Publication; 1981.
  • Ndimele PE. The effects of water hyacinth (Eichhornia crassipes [Mart.] Solms) infestation on the physico-chemistry, nutrient and heavy metal content of Badagry Creek and Ologe Lagoon, Lagos, Nigeria. J Environ Sci Technol. 2012;5:128–136. doi: 10.3923/jest.2012.128.136
  • Ndimele PE, Kumolu-Johnson CA, Anetekhai MA. The invasive aquatic macrophyte, water hyacinth {Eichhornia crassipes (Mart.) solm-Laubach: Pontedericeae}: problems and prospects. Res J Environ Sci. 2011;5:509–520. doi: 10.3923/rjes.2011.509.520
  • Palprasert C, Kongsricharoern N, Kanjanaprapin W. Production of feed and fertilizer from water hyacinth plants in the tropics. Waste Manage Res. 1994;12:3–11. doi: 10.1177/0734242X9401200102
  • Gomes HI. Phytoremediation for bioenergy: challenges and opportunities. Environ Technol Rev. 2012;1:59–66. doi: 10.1080/09593330.2012.696715
  • Nolan WJ, Kirmse DW. The paper making properties of water hyacinth. Hyacinth Con J. 1974;12:90–96.
  • Dar SH, Kumawat DM, Singh N, Wani KA. Sewage treatment potentials of water hyacinth (Eichhornia crassipes). Res J Environ Sci. 2011;5:377–385. doi: 10.3923/rjes.2011.377.385
  • Mahamadi C, Nharingo T. Utilization of water hyacinth weed (Eichhornia crassipes) for the removal of Pb(II), Cd(II) and Zn(II) from aquatic environments: an adsorption isotherm study. Environ Technol. 2010;31:1221–1228. doi: 10.1080/09593331003646604
  • Cunningham SD, Anderson TA, Schwab AP, Hsu FC. Phytoremediation of soil contaminated with organic pollutants. Adv Agron. 1996;56:55–114. doi: 10.1016/S0065-2113(08)60179-0
  • Brooks RR. Phytoremediation by volatilization. In: Brooks RR, editor. Plants that hyperaccumulate heavy metals: their roles in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. Oxon: CAB International; 1998. p. 289–312.
  • Terry N, Zayed AM. Selenium volatilization by plants. In: Frankenberger JR, Benson S, editors. Selenium in the environment. New York: Marcel Dekker; 1994. p. 343–367.
  • Brooks RR, Robinson BH. Aquatic phytoremediation by accumulator plants. In: Brooks RR, editor. Plants that hyperaccumulate heavy metals: their roles in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. Oxon: CAB International; 1998. p. 203–226.
  • Dandie CE, Weber J, Aleer S, Adetutu EM, Ball AS, Juhasz AL. Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon degradation in aged contaminated soils. Chemosphere. 2010;81:1061–1068. doi: 10.1016/j.chemosphere.2010.09.059
  • Speihgt JG, Arjoon KK. Biodegradation of petroleum. In: Speihgt JG, Arjoon KK, editors. Bioremediation of petroleum and petroleum products. Hoboken, NJ: John Wiley and Sons; 2012. p. 305–360.
  • Chen BY, Yen CY, Chen WM, Chang CT, Wang CT, Hu YC. Exploring threshold operation criteria of biostimulation for azo dye decolorization using immobilized cell systems. Bioresour Technol. 2009;100:5763–5770. doi: 10.1016/j.biortech.2009.06.080
  • Davies L, Daniel F, Swannell R, Braddock J. Biodegradability of chemically-dispersed oil. Report No. AEAT/ENV/R0421. Abingdon, Oxfordshire, UK: AEA Technology Environment; 2001.
  • Mancera-Lopez ME, Esparza-Garcia F, Chavez-Gomez B, Rodriguez-Vazquez R, Saucedo-Castaneda G, Barrera-Cortes J. Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. Int Biodeter Biodegrad. 2008;61:151–160. doi: 10.1016/j.ibiod.2007.05.012
  • Trindade PVO, Sobral LG, Rizzo ACL, Leite SGF, Soriano AU. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study. Chemosphere. 2005;58:515–522. doi: 10.1016/j.chemosphere.2004.09.021
  • Atlas RM. Microbial hydrocarbon degradation-bioremediation of oil spills. J Chem Technol Biotechnol. 1991;52:149–156. doi: 10.1002/jctb.280520202
  • Atlas RM, Bartha R. Stimulated Bioremediation of oil slicks using oleophilic fertilizers. Environ Sci Technol. 1973;7:538–541. doi: 10.1021/es60078a005
  • Venosa AD, Lee K, Suidan MT, Garcia-Blanco S, Cobanli S, Moteleb M, Haines JR, Tremblay G, Hazelwood M. Bioremediation and biorestoration of a crude oil-contaminated freshwater wetland on St. Lawrence River. Biorem J. 2002;6:261–281. doi: 10.1080/10889860290777602
  • Adekunle IM. Bioremediation of soils contaminated with Nigerian petroleum products using composted municipal wastes. Biorem J. 2011;15:230–241. doi: 10.1080/10889868.2011.624137
  • Rubin E, Ramaswami A. The potential for phytoremediation of MTBE. Wat Res. 2001;35:1348–1353. doi: 10.1016/S0043-1354(00)00555-8
  • Wei S, Li Y, Zhou Q, Srivastava M, Chiu S, Zhan J, Wu Z, Sun T. Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L. J Hazard Mat. 2010;176:269–273. doi: 10.1016/j.jhazmat.2009.11.023
  • Venosa AD, Suidan MT, Wrenn BA, Strohmeier KL, Haines JR, Eberhart BL, King D, Holder E. Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ Sci Technol. 1996;30:1764–1775. doi: 10.1021/es950754r
  • American Public Health Association (APHA). Standards methods for the analysis of water and wastewater. 20th ed. Washington, DC: American Public Health Association (APHA), American Water Works Association (AWWA) and American Environment Federation (AEF); 1998.
  • Lin Q, Mendelssohn IA. The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecol Eng. 1998;10:263–274. doi: 10.1016/S0925-8574(98)00015-9
  • Ndimele PE, Ndimele CC. Comparative effects of biostimulation and phytoremediation on crude oil degradation and absorption by water hyacinth (Eichhornia crassipes [Mart.] Solms). Inter J Environ Stud. 2013;70:241–258. doi: 10.1080/00207233.2013.771503
  • Namkoong W, Hwang E, Park J, Choi J. Bioremediation of diesel-contaminated soil with composting. Environ Pollut. 2002;119:23–31. doi: 10.1016/S0269-7491(01)00328-1
  • Nocentini M, Pinelli D, Fava F. Bioremediation of a soil contaminated by hydrocarbon mixtures: the residual concentration problem. Chemosphere. 2000;41:1115–1123. doi: 10.1016/S0045-6535(00)00057-6
  • Sarkar D, Ferguson M, Datta R, Birnbaum S. Bioremediation of petroleum hydrocarbons in contaminated soils: comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ Pollut. 2005;136:187–195. doi: 10.1016/j.envpol.2004.09.025
  • Snoeyink VL, Jenkins D. Water chemistry. New York: Wiley; 1980.
  • Zytner RG, Salb A, Brook TR, Leunissen M, Stiver WH. Bioremediation of diesel fuel contaminated soil. Can J Civ Eng. 2001;28(Suppl. 1):131–140. doi: 10.1139/cjce-28-S1-131
  • Chapelle FH, Bradley PM, Lovley DR, Vroblesky DA. Measuring rates of biodegradation in a contaminated aquifer using field and laboratory methods. Groundwater. 1996;34:691–698. doi: 10.1111/j.1745-6584.1996.tb02057.x
  • Hrudey SE, Pollard SJ. The challenge of contaminated sites: remediation Approaches in North America. Environ Rev. 1993;1:55–72. doi: 10.1139/a93-006
  • Committee on in situ bioremediation. In Situ bioremediation: when does it work? Water science and technology board, commission on engineering and technical systems, and national research council. Washington, DC: National Academy Press; 1993.
  • Bento FM, Camargo FAO, Okeke BC, Frankenberger WT. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresour Technol. 2005;96:1049–1055. doi: 10.1016/j.biortech.2004.09.008
  • Loehr RC, McMillen SJ, Webster MT. Prediction of biotreatability and actual results: soils with petroleum hydrocarbons. Pract Period Hazard Toxic Radioact Waste Manage. 2001;5:78–87. doi: 10.1061/(ASCE)1090-025X(2001)5:2(78)
  • Lindstrom JE, Prince RC, Clark JC, Grossman MJ, Yeager TR, Braddock JF, Brown EJ. Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the Exxon Valdez oil spill. Appl Environ Microbiol. 1991;57:2514–2522.
  • Singh C, Lin J. Evaluation of nutrient addition to diesel biodegradation in contaminated soils. Afr J Biotechnol. 2009;8:3286–3293.
  • Ferguson SH, Franzmann PD, Revill AT, Snape I, Rayner JL. The effects of nitrogen and water on mineralization of hydrocarbons in diesel-contaminated terrestrial Antarctic soils. Cold Regions Sci Technol. 2003;37:197–212. doi: 10.1016/S0165-232X(03)00041-7
  • Le Floch S, Merlin FX, Guillerme M, Dalmazzone C, Le corre P. A field experimentation on bioremediation: Bioren. Environ Technol. 1999;20:897–907. doi: 10.1080/09593332008616885
  • Abbasi T, Abbasi SA. Factors which facilitate waste water treatment by aquatic weeds – the mechanism of the weeds’ purifying action. Inter J Environ Stud. 2010;67:349–371. doi: 10.1080/00207230902978380
  • Hernandez ME, Marin-Muniz JL, Olguin EJ. Effect of flooding frequency and nutrient addition on plant growth and total petroleum hydrocarbon removal in mangrove microcosms. J Water Resour Prot. 2014;6:1716–1730. doi: 10.4236/jwarp.2014.618154
  • Denis EM, Akhere MA, Udoh E, Okpo R. Phytoremediation of total petroleum hydrocarbon in polluted environment using an aquatic macrophyte, Heteranthera callifolia. The Int J Eng Sci. 2013;2:37–41.
  • Nandan S, Celin MS, Anand S, Bhella R, Mittal AK. Phytoremediation of 2,4,6-Trinitrotoluene (TNT) using selected macrophyte, Azolla microphylla. Int J Appl Eng Res. 2013;8:39–44.
  • Rosenberg E, Ron EZ. Bioremediation of petroleum contamination. In: Crawford RL, Crawford DL, editors. Bioremediations: principles and applications. UK: Cambridge University Press; 1996. p. 100–124.
  • Burk CJ. A four year analysis of vegetation following an oil spill in a freshwater marsh. J Appl Ecol. 1977;14:515–522. doi: 10.2307/2402563
  • Siciliano A, De Rosa S. Experimental formulation of a kinetic model describing the nitrification process in biological aerated filters filled with plastic elements. Environ Technol. 2014;36:293–301. doi: 10.1080/09593330.2014.944939
  • Shanableh A, Imteaz M. First-order hydrothermal oxidation kinetics of digested sludge compared with raw sludge. Environ Technol. 2008;29:1009–1020. doi: 10.1080/00207210802166856
  • Tyagi RD, Du YG. Kinetic model for the effects of heavy metals on activated sludge process using neural networks. Environ Technol. 1992;13:883–890. doi: 10.1080/09593339209385223
  • Thomas JM, Ward CH, Raymond RL, Wilson JT, Loehr RC. Bioremediation. Encyclopedia of microbiology. San Diego, CA: Academic Press; 1992.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.