218
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Simultaneous column preconcentration of ultra trace amounts of heavy metals with nano-adsorbent in some environmental and biological samples

&
Pages 300-307 | Received 22 Jan 2015, Accepted 29 Jun 2015, Published online: 10 Aug 2015

References

  • Mirzaei M, Behzadi M, Abadi NM, Beizaei A. Simultaneous separation/preconcentration of ultra trace heavy metals in industrial wastewaters by dispersive liquid-liquid microextraction based on solidification of floating organic drop prior to determination by graphite furnace atomic absorption spectrometry. J Hazard Mater. 2011;186:1739–1743. doi: 10.1016/j.jhazmat.2010.12.080
  • Keerthi, Vinduja V, Balasubramanian N. Removal of heavy metals by hybrid electrocoagulation and microfiltration processes. Environ Technol. 2014;34:2897–2902. doi: 10.1080/09593330.2013.796005
  • Mendil D, Uluozlu OD. Determination of trace metal levels in sediment and five fish species from lakes in Tokat, Turkey. Food Chem. 2007;101:739–745. doi: 10.1016/j.foodchem.2006.01.050
  • Sarmiento AM, DelValls A, Nieto JM, Salamanca MJ, Caraballo MA. Toxicity and potential risk assessment of a river polluted by acid mine drainage in the Iberian Pyrite Belt (SW Spain). Sci Total Environ. 2011;409:4763–4771. doi: 10.1016/j.scitotenv.2011.07.043
  • Ezoddin M, Taghizadeh T, Majidi B. Ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of Cd and Ni in tea and water samples. Environ Technol. 2014;35:2401–2409. doi: 10.1080/09593330.2014.907361
  • Kwak J, Kim KW, Park M, Kim J, Park K. Determination of lead in soil at a historical mining and smelting site using laser-induced breakdown spectroscopy. Environ Technol. 2012;33:2177–2184. doi: 10.1080/09593330.2012.665485
  • Jordão CP, de Andrade RP, Cotta AJB, et al. Copper, nickel and zinc accumulations in lettuce grown in soil amended with contaminated cattle manure vermicompost after sequential cultivations. Environ Technol. 2013;34:765–777. doi: 10.1080/09593330.2012.715759
  • Inna D, Lester JN, Scrimshaw MD, Cartmell E. Speciation and fate of copper in sewage treatment works with and without tertiary treatment: the effect of return flows. Environ Technol. 2014;35:1–9. doi: 10.1080/09593330.2013.800565
  • Fazelirad H, Taher MA. Ligandless, ion pair-based and ultrasound assisted emulsification solidified floating organic drop microextraction for simultaneous preconcentration of ultra-trace amounts of gold and thallium and determination by GFAAS. Talanta. 2013;103:375–383. doi: 10.1016/j.talanta.2012.10.082
  • Taher MA, Rahimi M, Fazelirad H. A sensitive fluorescence quenching method for determination of bismuth with tiron. J Lumin. 2014;145:976–980. doi: 10.1016/j.jlumin.2013.09.025
  • Cheraghi S, Taher MA, Fazelirad H. Voltammetric sensing of thallium at a carbon paste electrode modified with a crown ether. Microchim Acta. 2013;180:1157–1163. doi: 10.1007/s00604-013-1038-z
  • Taher MA, Rezaeipour E, Afzali D. Anodic stripping voltammetric determination of bismuth after solid-phase extraction using amberlite XAD-2 resin modified with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Talanta. 2004;63:797–801. doi: 10.1016/j.talanta.2003.12.017
  • Sun M, Wu Q. Determination of trace bismuth in human serum by cloud point extraction coupled flow injection inductively coupled plasma optical emission spectrometry. J Hazard Mater. 2011;192:935–939. doi: 10.1016/j.jhazmat.2010.11.044
  • Moyano S, Wuilloud RG, Olsina RA, Gásquez JA, Martinez LD. On-line preconcentration system for bismuth determination in urine by flow injection hydride generation inductively coupled plasma atomic emission spectrometry. Talanta. 2001;54:211–219. doi: 10.1016/S0039-9140(01)00310-1
  • Matusiewicz H, Krawczyk M. Determination of trace amounts of bismuth by in situ trapping hydride generation flame atomic absorption spectrometry. Chem Anal (Warsaw). 2007;52:565–571.
  • Kula İ, Arslan Y, Bakırdere S, Titretir S, Kendüzler E, Ataman OY. Determination and interference studies of bismuth by tungsten trap hydride generation atomic absorption spectrometry. Talanta. 2009;80:127–132. doi: 10.1016/j.talanta.2009.06.084
  • Grabarczyk M, Koper A. Simultaneous quantification of Bi(III) and U(VI) in environmental water samples with a complicated matrix containing organic compounds. Environ Monitor Assess. 2012;185:5515–5522. doi: 10.1007/s10661-012-2963-8
  • Yamini Y, Chaloosi M, Ebrahimzadeh H. Solid phase extraction and graphite furnace atomic absorption spectrometric determination of ultra trace amounts of bismuth in water samples. Talanta. 2002;56:797–803. doi: 10.1016/S0039-9140(01)00615-4
  • Shemirani F, Baghdadi M, Ramezani M, Jamali MR. Determination of ultra trace amounts of bismuth in biological and water samples by electrothermal atomic absorption spectrometry (ET-AAS) after cloud point extraction. Anal Chim Acta. 2005;534:163–169. doi: 10.1016/j.aca.2004.06.036
  • Wang JH, Hansen EH. Flow injection on-line two-stage solvent extraction preconcentration coupled with ET-AAS for determination of bismuth tn biological and environmental samples. Anal Lett. 2000;33:2747–2766. doi: 10.1080/00032710008543220
  • Zeeb M, Ganjali MR, Norouzi P, Kalaee MR. Separation and preconcentration system based on microextraction with ionic liquid for determination of copper in water and food samples by stopped-flow injection spectrofluorimetry. Food Chem Toxicol. 2011;49:1086–1091. doi: 10.1016/j.fct.2011.01.017
  • Abbasi S, Khani H, Tabaraki R. Determination of ultra trace levels of copper in food samples by a highly sensitive adsorptive stripping voltammetric method. Food Chem. 2010;123:507–512. doi: 10.1016/j.foodchem.2010.03.043
  • Takara EA, Pasini-Cabello SD, Cerutti S, Gasquez JA, Martinez LD. On-line preconcentration/determination of copper in parenteral solutions using activated carbon by inductively coupled plasma optical emission spectrometry. J Pharm Biomed Anal. 2005;39:735–739. doi: 10.1016/j.jpba.2005.04.010
  • Bahadır Z, Bulut VN, Ozdes D, Duran C, Bektas H, Soylak M. Separation and preconcentration of lead, chromium and copper by using with the combination coprecipitation-flame atomic absorption spectrometric determination. J Ind Eng Chem. 2014;20:1030–1034. doi: 10.1016/j.jiec.2013.06.039
  • Wu CX, Wu QH, Wang C, Wang Z. A novel method for the determination of trace copper in cereals by dispersive liquid-liquid microextraction based on solidification of floating organic drop coupled with flame atomic absorption spectrometry. Chin Chem Lett. 2011;22:473–476. doi: 10.1016/j.cclet.2010.10.049
  • Behbahani M, Najafi F, Amini MM, Sadeghi O, Bagheri A, Hassanlou PG. Solid phase extraction using nanoporous MCM-41 modified with 3,4-dihydroxybenzaldehyde for simultaneous preconcentration and removal of gold(III), palladium(II), copper(II) and silver(I). J Ind Eng Chem. 2014;20:2248–2255. doi: 10.1016/j.jiec.2013.09.057
  • Durukan I, Şahin ÇA, Bektaş S. Determination of copper traces in water samples by flow injection-flame atomic absorption spectrometry using a novel solidified floating organic drop microextraction method. Microchem J. 2011;98:215–219. doi: 10.1016/j.microc.2011.02.001
  • Taher MA, Daliri Z, Fazelirad H. Simultaneous extraction and preconcentration of copper, silver and palladium with modified alumina and their determination by electrothermal atomic absorption spectrometry. Chin Chem Lett. 2014;25:649–654. doi: 10.1016/j.cclet.2013.12.025
  • Alizadeh K, Zohrevand S, Ghiasvand AR, et al. Selective homogeneous liquid–liquid extraction and preconcentration of copper(II) into a micro droplet using a benzo-substituted macrocyclic diamide, and its determination by electrothermal atomic absorption spectrometry. Microchim Acta. 2010;168:115–121. doi: 10.1007/s00604-009-0268-6
  • El-Shahawi MS, Bashammakh AS, Orief MI, Alsibaai AA, Al-Harbi EA. Separation and determination of cadmium in water by foam column prior to inductively coupled plasma optical emission spectrometry. J Ind Eng Chem. 2014;20:308–314. doi: 10.1016/j.jiec.2013.03.033
  • Yang B, Gong Q, Zhao L, et al. Preconcentration and determination of lead and cadmium in water samples with a MnO2 coated carbon nanotubes by using ETAAS. Desalination. 2011;278:65–69. doi: 10.1016/j.desal.2011.05.010
  • Long X, Chomchoei R, Gała P, Hansen EH. Evaluation of a novel PTFE material for use as a means for separation and preconcentration of trace levels of metal ions in sequential injection (SI) and sequential injection lab-on-valve (SI-LOV) systems: determination of cadmium(II) with detection by electrothermal atomic absorption spectrometry (ETAAS). Anal Chim Acta. 2004;523:279–286.
  • Aranda PR, Gil RA, Moyano S, De Vito I, Martinez LD. Cloud point extraction for ultra-trace Cd determination in microwave-digested biological samples by ETAAS. Talanta. 2008;77:663–666. doi: 10.1016/j.talanta.2008.07.009
  • Yang W, Jianhua W. Octadecyl immobilized silica beads packed microcolumn versus PTFE knotted reactor as Cd(OH)2 precipitate collection media coupled to ETAAS for cadmium determination. Chin J Anal Chem. 2006;34:1078–1082. doi: 10.1016/S1872-2040(06)60051-0
  • Li S, Cai S, Hu W, Chen H, Liu H. Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples. Spectrochim Acta B. 2009;64:666–671. doi: 10.1016/j.sab.2009.05.023
  • Martinis EM, Olsina RA, Altamirano JC, Wuilloud RG. Sensitive determination of cadmium in water samples by room temperature ionic liquid-based preconcentration and electrothermal atomic absorption spectrometry. Anal Chim Acta. 2008;628:41–48. doi: 10.1016/j.aca.2008.09.001
  • Zhu X, Wang B. Determination of trace cadmium in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction. Microchim Acta. 2006;154:95–100. doi: 10.1007/s00604-005-0476-7
  • Konečná M, Komárek J, Trnková L. Determination of Cd by electrothermal atomic absorption spectrometry after electrodeposition on a graphite probe modified with palladium. Spectrochim Acta B. 2008;63:700–703. doi: 10.1016/j.sab.2008.03.008
  • Song Q, Li M, Huang L, Wu Q, Zhou Y, Wang Y. Bifunctional polydopamine@Fe3O4 core-shell nanoparticles for electrochemical determination of lead(II) and cadmium(II). Anal Chim Acta. 2013;787:64–70. doi: 10.1016/j.aca.2013.06.010
  • Maltez HF, Borges DLG, Carasek E, Welz B, Curtius AJ. Single drop micro-extraction with O,O-diethyl dithiophosphate for the determination of lead by electrothermal atomic absorption spectrometry. Talanta. 2008;74:800–805. doi: 10.1016/j.talanta.2007.07.010
  • Carletto JS, Carasek E, Welz B. Hollow-fiber liquid–liquid–solid micro-extraction of lead in soft drinks and determination by graphite furnace atomic absorption spectrometry. Talanta. 2011;84:989–994. doi: 10.1016/j.talanta.2011.03.002
  • Yasri NG, Halabi AJ, Istamboulie G, Noguer T. Chronoamperometric determination of lead ions using PEDOT:PSS modified carbon electrodes. Talanta. 2011;85:2528–2533. doi: 10.1016/j.talanta.2011.08.013
  • Marchisio PF, Sales A, Cerutti S, Marchevski E, Martinez LD. On-line preconcentration/determination of lead in Ilex paraguariensis samples (mate tea) using polyurethane foam as filter and USN-ICP-OES. J Hazard Mater. 2005;124:113–118. doi: 10.1016/j.jhazmat.2005.04.017
  • Elçi L, Arslan Z, Tyson JF. Determination of lead in wine and rum samples by flow injection-hydride generation-atomic absorption spectrometry. J Hazard Mater. 2009;162:880–885. doi: 10.1016/j.jhazmat.2008.05.113
  • Zhou Q, Zhao N, Xie G. Determination of lead in environmental waters with dispersive liquid–liquid microextraction prior to atomic fluorescence spectrometry. J Hazard Mater. 2011;189:48–53. doi: 10.1016/j.jhazmat.2011.01.123
  • Sayar O, Akbarzadeh Torbati N, Saravani H, Mehrani K, Behbahani A, Moghadam Zadeh HR. A novel magnetic ion imprinted polymer for selective adsorption of trace amounts of lead(II) ions in environment samples. J Ind Eng Chem. 2014;20:2657–2662. doi: 10.1016/j.jiec.2013.10.052
  • Meng FY, Wei YQ, Lu H, Liu XX, Liu JX. Simultaneous analysis of Cu and Pb as ABEDTA complexes in Rhizoma coptidis by capillary electrophoresis coupled with solid phase extraction. Chin Chem Lett. 2012;23:591–594. doi: 10.1016/j.cclet.2012.03.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.