240
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Halotolerance and effect of salt on hydrophobicity in hydrocarbon-degrading bacteria

, &
Pages 1133-1140 | Received 05 May 2015, Accepted 25 Sep 2015, Published online: 02 Nov 2015

References

  • Arocena JM, Rutherford PM. Properties of hydrocarbon- and salt-contaminated flare pit soils in northeastern British Columbia (Canada). Chemosphere. 2005;60:567–575. doi: 10.1016/j.chemosphere.2004.12.077
  • Kirkwood KM. Bacterial attack on aliphatic sulfides and related compounds representing the sulfur groups in heavy crude oil [Ph.D. dissertation]. Edmonton (AB): University of Alberta; 2006.
  • Salt contamination assessment & remediation guidelines. Edmonton (Canada): Alberta Environment, Environmental Sciences Division; 2001 [cited 2015 Jan 28]. Available from: http://environment.gov.ab.ca/info/library/6144.pdf
  • Komarova TI, Koronelli TV, Timokhina EA. The role of low-molecular-weight nitrogen compounds in the osmotolerance of Rhodococcus erythropolis and Arthrobacter globiformis. Microbiology. 2002;71:139–142. doi: 10.1023/A:1015129700762
  • Matys VY, Baryshnikova LM, Golovlev EL. Adaptation of bacteria of the genera Rhodococcus and Gordona to stress conditions. Microbiology. 1998;67:616–619.
  • Zvyagintseva IS, Poglazova MN, Gotoeva MT, Belyaev SS. Effect on the medium salinity on oil degradation by nocardioform bacteria. Microbiology. 2001;70:652–656. doi: 10.1023/A:1013179513922
  • Plotnikova EG, Altyntseva OV, Kosheleva IA, et al. Bacterial degraders of polycyclic aromatic hydrocarbons isolated from salt-contaminated soils and bottom sediments in salt mining areas. Microbiology. 2001;70:51–58. doi: 10.1023/A:1004892804670
  • Matveeva NI, Voronina NA, Borzenkov IA, Plakunov VK, Belyaev SS. Composition and content of osmoprotectants in oil-oxidizing bacteria grown under different cultivation conditions. Microbiology. 1997;66:23–27.
  • Rhykerd RL, Weaver RW, McInnes KJ. Influence of salinity on bioremediation of oil in soil. Environ Pollut. 1995;90:127–130. doi: 10.1016/0269-7491(94)00087-T
  • Børresen MH, Rike AG. Effects of nutrient content, moisture content and salinity on mineralization of hexadecane in an Arctic soil. Cold Reg Sci Technol. 2007;48:129–138. doi: 10.1016/j.coldregions.2006.10.006
  • Ulrich AC, Guigard SE, Foght JM, et al. Effect of salt on aerobic biodegradation of petroleum hydrocarbons in contaminated groundwater. Biodegradation. 2009;20:27–38. doi: 10.1007/s10532-008-9196-0
  • de Carvalho CCCR, da Fonseca MMR. Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol Lett. 2005;51:389–399. doi: 10.1016/j.femsec.2004.09.010
  • Badejo AC, Badejo AO, Shin KH, Chai YG. A gene expression study of the activities of aromatic ring-cleavage dioxygenases in Mycobacterium gilvum PYR-GCK to changes in salinity and pH during pyrene degradation. PLoS ONE. 2013;8:e58066. doi: 10.1371/journal.pone.0058066
  • Foght J, Semple K, Westlake DWS, et al. Development of a standard bacterial consortium for laboratory efficacy testing of commercial freshwater oil spill bioremediation agents. J Ind Microbiol Biotechnol. 1998;21:322–330. doi: 10.1038/sj.jim.2900594
  • Foght J, Semple K, Gauthier C, et al. Effect of nitrogen source on biodegradation of crude oil by a defined bacterial consortium incubated under cold, marine conditions. Environ Technol. 1999;20:839–849. doi: 10.1080/09593332008616879
  • Foght JM. Identification of the bacterial isolates comprising the Environment Canada freshwater and cold marine standard inocula, using 16S rRNA gene sequencing and analysis. Ottawa (Canada): Environmental Protection Service, Environment Canada; 1999. (Manuscript Report EE-164).
  • Kirkwood KM, Ebert S, Foght JM, Fedorak PM, Gray MR. Bacterial biodegradation of aliphatic sulfides under aerobic carbon- or sulfur-limited growth conditions. J Appl Microbiol. 2005;99:1444–1454. doi: 10.1111/j.1365-2672.2005.02723.x
  • Bushnell LD, Haas HF. The utilization of certain hydrocarbons by microorganisms. J Bacteriol. 1941;41:653–673.
  • Fedorak PM, Grbić-Galić D. Aerobic microbial cometabolism of benzothiophene and 3-methylbenzothiophene. Appl Environ Microbiol. 1991;57:932–940.
  • MacPherson T, Greer CW, Zhou E, et al. Application of SPME/GC-MS to characterize metabolites in the biodesulfurization of organosulfur model compounds in bitumen. Environ Sci Technol. 1998;32:421–426. doi: 10.1021/es970356j
  • Rosenberg M, Gutnick D, Rosenberg E. Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett. 1980;9:29–33. doi: 10.1111/j.1574-6968.1980.tb05599.x
  • Agwu O, Oluwagunke T. Halotolerance of heterotrophic bacteria isolated from tropical coastal waters. Int J Sci: Basic Appl Res. 2014;16:224–231.
  • Margesin R, Schinner F. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles. 2001;5:73–83. doi: 10.1007/s007920100184
  • Shuler ML, Kargi F. Bioprocess engineering: basic concepts. 2nd ed. Upper Saddle River (NJ): Prentice Hall PTR; 2002.
  • Kempf B, Bremer E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol. 1998;170:319–330. doi: 10.1007/s002030050649
  • Finlayson N, Reid P. Remediation of salt affected sites by leaching. Edmonton (Canada): Petroleum Technology Alliance Canada; 2007 [cited 2015 Jan 28]. Available from: http://www.ptac.org/projects/314
  • Gawel LJ. A guide for remediation of salt/hydrocarbon impacted soil. Bismarck (ND): North Dakota Industrial Commission, Department of Mineral Resources; 2006 [cited 2015 Jan 28]. Available from: https://www.dmr.nd.gov/downloads/soilRemediationGuideL.pdf
  • Abbasnezhad H, Gray MR, Foght JM. Two different mechanisms for adhesion of Gram-negative bacterium, Pseudomonas fluorescens LP6a, to an oil-water interface. Colloid Surface B Biointerf. 2008;62:36–41. doi: 10.1016/j.colsurfb.2007.09.023
  • de Carvalho CCCR. Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions. Res Microbiol. 2012;163:125–136. doi: 10.1016/j.resmic.2011.11.003
  • de Carvalho CCCR, Marques MPC, Hachicho N, Heipieper HJ. Rapid adaptation of Rhodococcus erythropolis cells to salt stress by synthesizing polyunsaturated fatty acids. Appl Microbiol Biotechnol. 2014;98:5599–5606.
  • Sheng GP, Yu HQ, Yue Z. Factors influencing the production of extracellular polymeric substances by Rhodopseudomonas acidophila. Int Biodeterior Biodegrad. 2006;58:89–93. doi: 10.1016/j.ibiod.2006.07.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.