175
Views
4
CrossRef citations to date
0
Altmetric
Articles

Characterization of oil-palm trunk residue degradation enzymes derived from the isolated fungus, Penicillium rolfsii c3-2(1) IBRL

, , , , , & show all
Pages 1550-1558 | Received 04 Aug 2015, Accepted 01 Nov 2015, Published online: 08 Jan 2016

References

  • Sanderson K. Lignocellulose: a chewy problem. Nature. 2011;474:S12–S14. doi: 10.1038/474S012a
  • Dawson L, Boopathy R. Use of post-harvest sugarcane residue for ethanol production. Bioresour Technol. 2007;98:1695–1699. doi: 10.1016/j.biortech.2006.07.029
  • Jung YH, Kim IJ, Kim JJ, et al. Ethanol production from oil palm trunks treated with aqueous ammonia and cellulase. Bioresour Technol. 2011;102:7307–7312. doi: 10.1016/j.biortech.2011.04.082
  • Lim KO, Ahmaddin FH, Vizhi SM. A note on the conversion of oil-palm trunks to glucose via acid hydrolysis. Bioresour Technol. 1997;59:33–35. doi: 10.1016/S0960-8524(96)00131-9
  • Yamada H, Tanaka R, Sulaiman O, et al. Old oil palm trunk: a promising source of sugars for bioethanol production. Biomass Bioenergy. 2010;34:1608–1613. doi: 10.1016/j.biombioe.2010.06.011
  • Rostrup-Nielsen JR. Making fuels from biomass. Science. 2005;308:1421–1422. doi: 10.1126/science.1113354
  • Graham-Rowe D. Agriculture: beyond food versus fuel. Nature. 2011;474:S6–S8. doi: 10.1038/474S06a
  • Goh CS, Tan KT, Lee KT, Bhatia S. Bio-ethanol from lignocellulose: status, perspectives and challenges in Malaysia. Bioresour Technol. 2010;101:4834–4841. doi: 10.1016/j.biortech.2009.08.080
  • Misson M, Haron R, Kamaroddin MFA, Amin NAS. Pretreatment of empty palm fruit bunch for production of chemicals via catalytic pyrolysis. Bioresour Technol. 2009;100:2867–2873. doi: 10.1016/j.biortech.2008.12.060
  • Kelly-Yong TL, Lee KT, Mohamed AR, Bhatia S. Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy. 2007;35:5692–5701. doi: 10.1016/j.enpol.2007.06.017
  • Chundawat SPS, Beckham GT, Himmel ME, Dale BE. Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng. 2011;2:121–145. doi: 10.1146/annurev-chembioeng-061010-114205
  • Gusakov AV. Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol. 2011;29:419–425. doi: 10.1016/j.tibtech.2011.04.004
  • Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv. 2009;27: 185–194. doi: 10.1016/j.biotechadv.2008.11.001
  • Delabona PdS, Pirota RDPB, Codima CA, Tremacoldi CR, Rodrigues A, Farinas CS. Using Amazon forest fungi and agricultural residues as a strategy to produce cellulolytic enzymes. Biomass Bioenergy. 2012;37:243–250. doi: 10.1016/j.biombioe.2011.12.006
  • Kvesitadze E, Adeishvili E, Gomarteli M, Kvachadze L, Kvesitadze G. Cellulase end xylanase activity of fungi in a collection isolated from the southern Caucasus. Int Biodeterior Biodegrad. 1999;43:189–196. doi: 10.1016/S0964-8305(99)00053-0
  • McIntosh S, Vancov T. Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour Technol. 2010;101:6718–6727. doi: 10.1016/j.biortech.2010.03.116
  • Park JY, Seyama T, Shiroma R, et al. Efficient recovery of glucose and fructose via enzymatic saccharification of rice straw with soft carbohydrates. Biosci Biotechnol Biochem. 2009;73:1072–1077. doi: 10.1271/bbb.80840
  • Berlin A, Gilkes N, Kurabi A, et al. Weak lignin-binding enzymes: a novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Appl Biochem Biotechnol. 2005;121:163–170. doi: 10.1385/ABAB:121:1-3:0163
  • Kumar L, Arantes V, Chandra R, Saddler J. The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol. 2012;103:201–208. doi: 10.1016/j.biortech.2011.09.091
  • Lee KC, Arai T, Ibrahim D, et al. Purification and characterization of a xylanase from the newly isolated Penicillium rolfsii c3-2(1) IBRL. BioResources. 2015;10:1627–1643.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin-Phenol reagents. J Biol Chem. 1951;193:265–275.
  • Ghose TK. Measurement of cellulase activities. Pure Appl Chem. 1987;59:257–268.
  • Somogyi M. A new reagent for the determination of sugars. J Biol Chem. 1945;160:61–68.
  • Nelson N. A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem. 1944;153:375–381.
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426–428. doi: 10.1021/ac60147a030
  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–356. doi: 10.1021/ac60111a017
  • Rahikainen J, Mikander S, Marjamaa K, et al. Inhibition of enzymatic hydrolysis by residual lignins from softwood--study of enzyme binding and inactivation on lignin-rich surface. Biotechnol Bioeng. 2011;108:2823–2834. doi: 10.1002/bit.23242
  • Berlin A, Gilkes N, Kilburn D, et al. Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates – evidence for the role of accessory enzymes. Enzyme Microb Technol. 2005;37:175–184. doi: 10.1016/j.enzmictec.2005.01.039
  • Skomarovsky AA, Gusakov AV, Okunev ON, et al. Studies of hydrolytic activity of enzyme preparations of Penicillium and Trichoderma fungi. Appl Biochem Microbiol. 2005;41:182–184. doi: 10.1007/s10438-005-0032-6
  • Skomarovsky AA, Markov AV, Gusakov AV, et al. New cellulases efficiently hydrolyzing lignocellulose pulp. Appl Biochem Microbiol. 2006;42:592–597. doi: 10.1134/S0003683806060093
  • Zamost B, Nielsen H, Starnes R. Thermostable enzymes for industrial applications. J Ind Microbiol. 1991;8:71–81. doi: 10.1007/BF01578757
  • Castellanos OF, Sinitsyn AP, Vlasenko EY. Evaluation of hydrolysis conditions of cellulosic materials by Penicillium cellulase. Bioresour Technol. 1995;52:109–117. doi: 10.1016/0960-8524(95)00010-C
  • de Castro AM, de Albuquerque de Carvalho ML, Leite SG, Pereira N, Jr. Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J Ind Microbiol Biotechnol. 2010;37:151–158. doi: 10.1007/s10295-009-0656-2
  • Martins LF, Kolling D, Camassola M, Dillon AJ, Ramos LP. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresour Technol. 2008;99:1417–1424. doi: 10.1016/j.biortech.2007.01.060
  • Singh R, Varma AJ, Seeta Laxman R, Rao M. Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: comparison with commercial cellulase. Bioresour Technol. 2009;100:6679–6681. doi: 10.1016/j.biortech.2009.07.060
  • Berlin A, Gilkes N, Kilburn D, et al. Evaluation of cellulase preparations for hydrolysis of hardwood substrates. Appl Biochem Biotechnol. 2006;129-132:528–545. doi: 10.1385/ABAB:130:1:528
  • Jørgensen H, Mørkeberg A, Krogh KBR, Olsson L. Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microb Technol. 2005;36:42–48. doi: 10.1016/j.enzmictec.2004.03.023
  • Okeke BC, Obi SKC. Saccharification of agro-waste materials by fungal cellulases and hemicellulases. Bioresour Technol. 1995;51:23–27. doi: 10.1016/0960-8524(94)00061-5
  • Kirk TK, Farrell RL. Enzymatic ‘Combustion': the microbial degradation of lignin. Annu Rev Microbiol. 1987;41:465–505. doi: 10.1146/annurev.mi.41.100187.002341
  • Fujii T, Fang X, Inoue H, Murakami K, Sawayama S. Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol Biofuels. 2009;2:24. doi: 10.1186/1754-6834-2-24
  • Cowling EB, Kirk TK. Properties of cellulose and lignocellulosic materials as substrates for enzymatic conversion processes. Biotechnol Bioeng Symp. 1976;6:95–123.
  • Puri VP. Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol Bioeng. 1984;26:1219–1222. doi: 10.1002/bit.260261010
  • Berlin A, Maximenko V, Gilkes N, Saddler J. Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng. 2007;97:287–296. doi: 10.1002/bit.21238

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.