194
Views
6
CrossRef citations to date
0
Altmetric
Articles

Dual purpose recovered coagulant from drinking water treatment residuals for adjustment of initial pH and coagulation aid in electrocoagulation process

&
Pages 1605-1617 | Received 10 Aug 2015, Accepted 15 Nov 2015, Published online: 30 Dec 2015

References

  • Gengec E, Kobya M, Demirbas E, Akyol A, Oktor K. Optimization of baker's yeast wastewater using response surface methodology by electrocoagulation. Desalination. 2012;286:200–209. doi: 10.1016/j.desal.2011.11.023
  • Şen S, Demirer GN. Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Res. 2003;37:1868–1878. doi: 10.1016/S0043-1354(02)00577-8
  • Pala A, Tokat E. Color removal from cotton textile industry wastewater in an activated sludge system with various additives. Water Res. 2002;36:2920–2925. doi: 10.1016/S0043-1354(01)00529-2
  • Khandegar V, Saroha AK. Electrocoagulation for the treatment of textile industry effluent – A review. J Environ Manage. 2013;128:949–963. doi: 10.1016/j.jenvman.2013.06.043
  • Daneshvar N, Ashassi-Sorkhabi H, Tizpar A. Decolorization of Orange II by electrocoagulation method. Sep Purif Technol. 2003;31:153–162. doi: 10.1016/S1383-5866(02)00178-8
  • Kobya M, Gengec E, Sensoy MT, Demirbas E. Treatment of textile dyeing wastewater by electrocoagulation using Fe and Al electrodes: optimisation of operating parameters using central composite design. Color Technol. 2014;130:226–235. doi: 10.1111/cote.12090
  • Mook WT, Aroua MK, Issabayeva G. Prospective application of renewable energy based electrochemical systems in wastewater treatment: a review. Renew Sust Energ Rev. 2014;38:36–46. doi: 10.1016/j.rser.2014.05.042
  • Zhao HZ, Sun Y, Xu LN, Ni JR. Removal of Acid Orange 7 in simulated wastewater using a three-dimensional electrode reactor: removal mechanisms and dye degradation pathway. Chemosphere. 2010;78:46–51. doi: 10.1016/j.chemosphere.2009.10.034
  • Bellebia S, Kacha S, Bouyakoub AZ, Derriche Z. Experimental investigation of chemical oxygen demand and turbidity removal from cardboard paper mill effluents using combined electrocoagulation and adsorption processes. Environ Prog Sust Energy. 2012;31:361–370. doi: 10.1002/ep.10556
  • Narayanan NV, Ganesan M. Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation. J Hazard Mater. 2009;161:575–580. doi: 10.1016/j.jhazmat.2008.03.113
  • Aouni A, Fersi C, Ali MBS, Dhahbi M. Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process. J Hazard Mater. 2009;168:868–874. doi: 10.1016/j.jhazmat.2009.02.112
  • Yahiaoui O, Lounici H, Abdi N, et al. Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes. Chem Eng Process. 2011;50:37–41. doi: 10.1016/j.cep.2010.11.003
  • Asithambi P, Susree M, Saravanathamizhan R, Matheswaran M. Ozone assisted electrocoagulation for the treatment of distillery effluent. Desalination. 2012;297:1–7. doi: 10.1016/j.desal.2012.04.011
  • He ZQ, Song S, Qiu JP, Cao XY, Hu YQ, Chen JM. Decolorization of C.I. Reactive Yellow 84 in aqueous solution by electrocoagulation enhanced with ozone: influence of operating conditions. Environ Technol. 2007;28:1257–1263. doi: 10.1080/09593332808618884
  • Ivonne L, Carlos B, Bryan B, Pablo J, Eduardo C. A combined electrocoagulation-electrooxidation treatment for industrial wastewater. J Hazard Mater. 2010;175:688–694. doi: 10.1016/j.jhazmat.2009.10.064
  • Zhao X, Zhang B, Liu H, Qu J. Simultaneous removal of arsenite and fluoride via an integrated electro-oxidation and electrocoagulation process. Chemosphere. 2011;83:726–729. doi: 10.1016/j.chemosphere.2011.01.055
  • Al-Shannag M, Lafi W, Bani-Melhem K, Gharagheer F, Dhaimat O. Reduction of COD and TSS from paper industries wastewater using electro-coagulation and chemical coagulation. Sep Sci Technol. 2012;47:700–708. doi: 10.1080/01496395.2011.634474
  • Can OT, Kobya M, Demirbas E, Bayramoglu M. Treatment of the textile wastewater by combined electrocoagulation. Chemosphere. 2006;62:181–187. doi: 10.1016/j.chemosphere.2005.05.022
  • Babatunde AO, Zhao YQ. Constructive approaches toward water treatment works sludge management: an international review of beneficial reuses. Crit Rev Env Sci Technol. 2007;37:129–164. doi: 10.1080/10643380600776239
  • Nair AT, Ahammed MM. Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater. Environ Sci Pollut Res. 2014;21:10407–10418. doi: 10.1007/s11356-014-2900-1
  • Chen YJ, Wang WM, Wei MJ, et al. Effect of Al-coagulant sludge characteristics on the efficiency of coagulant recovery by acidification. Environ Technol. 2012;33:2525–2530. doi: 10.1080/09593330.2012.679696
  • Huang S, Chen JL, Chiang KY, Wu CC. Effects of acidification on dewaterability and aluminum concentration of alum sludge. Sep Sci Technol. 2010;45:1165–1169. doi: 10.1080/01496391003734631
  • Can OT, Bayramoglu M, Kobya M. Decolorization of reactive dye solutions by electrocoagulation using aluminum electrodes. Ind Eng Chem Res. 2003;42:3391–3396. doi: 10.1021/ie020951g
  • Sahu O, Mazumdar B, Chaudhari PK. Treatment of wastewater by electrocoagulation: a review. Environ Sci Pollut Res. 2014;21:2397–2413. doi: 10.1007/s11356-013-2208-6
  • Zaied M, Bellakhal N. Electrocoagulation treatment of black liquor from paper industry. J Hazard Mater. 2009;163:995–1000. doi: 10.1016/j.jhazmat.2008.07.115
  • Okuda T, Nishijima W, Suginoto M, et al. Removal of coagulant aluminum from water treatment residuals by acid. Water Res. 2014;60:75–81. doi: 10.1016/j.watres.2014.04.041
  • Xu GR, Yan ZC, Wang YC, Wang N. Recycle of Alum recovered from water treatment sludge in chemically enhanced primary treatment. J Hazard Mater. 2009;161:663–669. doi: 10.1016/j.jhazmat.2008.04.008
  • Gomes JAG, Daida P, Kesmez M, et al. Aresenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products. J Hazard Mater. 2007;B139:220–231. doi: 10.1016/j.jhazmat.2005.11.108
  • Satapanajaru T, Comfort SD, Shea PJ. Enhancing metolachlor destruction rates with aluminum and iron slats during zerovalent iron treatment. J Environ Qual. 2003;32:1726–1734. doi: 10.2134/jeq2003.1726
  • Un UT, Aytac E. Electrocoagulation in a packed bed reactor-complete treatment of color and cod from real textile wastewater. J Environ Manag. 2013;123:113–119. doi: 10.1016/j.jenvman.2013.03.016
  • Xu W, Gao B, Yue Q, Wang Y. Effect of shear force and solution pH on flocs breakage and re-growth formed by nano-Al13 polymer. Water Res. 2010;44:1893–1899. doi: 10.1016/j.watres.2009.11.029
  • Verma SK, Khandegar V, Saroha AK. Removal of chromium from electroplating industry effluent using electrocoagulation. J Hazard Toxic Radio Waste. 2013;17:146–152. doi: 10.1061/(ASCE)HZ.2153-5515.0000170
  • Mahesh S, Prasad B, Mall ID, Mishra IM. Electrochemical degradation of pulp and paper mill wastewater. Part 1. COD and color removal. Ind Eng Chem Res. 2006;45:2830–2839. doi: 10.1021/ie0514096
  • Adhoum N, Monser L, Bellakhal N, Belgaied JE. Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation. J Hazard Mater. 2004;B112:207–213. doi: 10.1016/j.jhazmat.2004.04.018
  • Georgiou D, Metallinou C, Aivasidis A, Voudrias E, Gimouhopoulos K. Decolorization of azo-reactive dyes and cotton-textile wastewater using anaerobic digestion and acetate-consuming bacteria. Biochem Eng J. 2004;19:75–79. doi: 10.1016/j.bej.2003.11.003
  • Sridhar R, Sivakumar V, Immanuel VP, Maran JP. Treatment of pulp and paper industry bleaching effluent by electrocoagulation process. J Hazard Mater. 2011;186:1495–1502. doi: 10.1016/j.jhazmat.2010.12.028
  • Yilmaz AE, Boncukcuoglu R, Kocakerim MM, Keskinler B. The investigation of parameters affecting boron removal by electrocoagulation method. J Hazard Mater. 2005;125:160–165. doi: 10.1016/j.jhazmat.2005.05.020
  • Li H, Li Y, Xiang L, et al. Heterogeneous photo-Fenton decolorization of Orange II over Al-pillared Fe-smectite: response surface approach, degradation pathway, and toxicity evaluation. J Hazard Mater. 2015;287:32–41. doi: 10.1016/j.jhazmat.2015.01.023
  • Jung KW, Park DS, Hwang MJ, Ahn KH. Decolorization of acid orange 7 by an electric field-assisted modified orifice plate hydrodynamic cavitation system: optimization of operational parameters. Ultrason Sonochem. 2015;26:22–29. doi: 10.1016/j.ultsonch.2015.02.010
  • Noordin MY, Venkatesh VC, Sharif S, Elting S, Abdullah A. Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J Mater Process Technol. 2004;145:46–58. doi: 10.1016/S0924-0136(03)00861-6
  • Un UT, Kandemir A, Erginel N, Ocal SE. Continuous electrocoagulation of cheese whey wastewater: an application of response surface methodology. J Environ Manage. 2014;146:245–250. doi: 10.1016/j.jenvman.2014.08.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.