552
Views
18
CrossRef citations to date
0
Altmetric
Articles

Evaluation of the simultaneous removal of recalcitrant drugs (bezafibrate, gemfibrozil, indomethacin and sulfamethoxazole) and biodegradable organic matter from synthetic wastewater by electro-oxidation coupled with a biological system

, , &
Pages 2964-2974 | Received 17 Nov 2015, Accepted 23 Mar 2016, Published online: 28 Apr 2016

References

  • Boxal A. The environmental side effects. EMBO Rep. 2004;5:1110–1112. doi: 10.1038/sj.embor.7400307
  • Owen R, Jobling S. The hidden cost of flexible fertility. Nature. 2012;485:441. doi: 10.1038/485441a
  • Santos LH, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM. Ecotoxicological aspects related to the presence of pharmaceuticals in aquatic environment. J Hazard Mater. 2010;175:45–95. doi: 10.1016/j.jhazmat.2009.10.100
  • Gómez-Oliván LM, Galar-Martínez M, Islas-Flores H, García-Medina S, SanJuan-Reyes N. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna. Comp Biochem Physiol C Pharmacol Toxicol. 2014;164:21–26. doi: 10.1016/j.cbpc.2014.04.004
  • Miège C, Choubert J, Ribeiro L, Eusèbe M, Coquery M. Fate of pharmaceuticals and personal care products in wastewater treatment plants – Conception of a database and first results. Environ Pollut. 2009;157:1721–1726. doi: 10.1016/j.envpol.2008.11.045
  • Kraigher B, Kosjek T, Heath E, Kompare B, Mandic-Mulec I. Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors. Water Res. 2008;42:4578–4588. doi: 10.1016/j.watres.2008.08.006
  • Al-Ahmad A, Daschner F, Kümmerer K. Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of wastewater bacteria. Arch Environ Contam Toxicol. 1999;37(2):158–163. doi: 10.1007/s002449900501
  • Gónzalez O, Sans C, Esplugas S. Sulfamethoxazole abatement by photo-Fenton toxicity, inhibition and biodegradability assessment of intermediates. J Hazard Mater. 2007;146:459–464. doi: 10.1016/j.jhazmat.2007.04.055
  • Trovó AG, Nogueira RF, Agüera A, Fernandez-Alba AR, Sirtori C, Malato S. Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Res. 2009;43:3922–3931. doi: 10.1016/j.watres.2009.04.006
  • Gao S, Zhao Z, Xu Y, et al. Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate – a comparative study. J Hazard Mater. 2014;274:258–269. doi: 10.1016/j.jhazmat.2014.04.024
  • Rodayan A, Roy R, Yargeau V. Oxidation products of sulfamethoxazole in ozonated secondary effluent. J Hazard Mater. 2010;177:237–243. doi: 10.1016/j.jhazmat.2009.12.023
  • Beltrán FJ, Aguinaco A, García-Araya JF, Oropesa A. Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water. Water Res. 2008;42:3799–3808. doi: 10.1016/j.watres.2008.07.019
  • Nasuhoglu D, Yargeau V, Berk D. Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation (λmax=254 nm). J Hazard Mater. 2011;186:67–75. doi: 10.1016/j.jhazmat.2010.10.080
  • Ganzenko O, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. Environ Sci Pollut Res. 2014;21:8493–8524. doi: 10.1007/s11356-014-2770-6
  • Oller I, Malato S, Sánchez-Pérez JA. Combination of advanced oxidation processes and biological treatments for wastewater decontamination – a review. Sci Total Environ. 2011;409:4141–4166. doi: 10.1016/j.scitotenv.2010.08.061
  • Szpyrkowicz L, Kaul SN, Neti RN. Tannery wastewater treatment by electro-oxidation coupled with a biological process. J Appl Electrochem. 2005;35:381–390. doi: 10.1007/s10800-005-0796-7
  • Fontmorin JM, Fourcade F, Geneste F, Floner D, Huguet S, Amrane A. Combined process for 2,4-dichlorophenoxyacetic acid treatment – coupling of an electrochemical system with a biological treatment. Biochem Eng J. 2013;70:17–22. doi: 10.1016/j.bej.2012.09.015
  • Mansour D, Fourcade F, Huguet S, et al. Improvement of the activated sludge treatment by its combination with electro Fenton for the mineralization of sulfamethazine. Int Biodeterior Biodegrad. 2014;88:29–36. doi: 10.1016/j.ibiod.2013.11.016
  • Sirés I, Enric B. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int. 2012;40:212–229. doi: 10.1016/j.envint.2011.07.012
  • Feng L, van Hullebusch ED, Rodrigo MA, Esposito G, Oturan MA. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. Chem Eng J. 2013;228:944–964. doi: 10.1016/j.cej.2013.05.061
  • Guzmán-Duque FL, Palma-Goyes RE, González I, Peñuela G, Torres-Palma RA. Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water. J Hazard Mater. 2014;278:221–226. doi: 10.1016/j.jhazmat.2014.05.076
  • Martínez-Huitle CA, Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev. 2006;35:1324–1340. doi: 10.1039/B517632H
  • Quinn B, Gagné F, Blaise C. An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata. Sci Total Environ. 2008;389:306–314. doi: 10.1016/j.scitotenv.2007.08.038
  • Raldúa D, André M, Babin PJ. Clofibrate and gemfibrozil induce an embryonic malabsorption syndrome in zebrafish. Toxicol Appl Pharmacol. 2008;228:301–314. doi: 10.1016/j.taap.2007.11.016
  • López-Doval JC, Kukkonen JV, Rodrigo P, Muñoz I. Effects of indomethacin and propanolol on Chironomus riparius and Physella (Costatella) acuta. Ecotoxicol Environ Saf. 2012;78:110–115. doi: 10.1016/j.ecoenv.2011.11.004
  • Kosma CI, Lambropoulou DA, Albanis TA. Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Sci Total Environ. 2014;466–467:421–438. doi: 10.1016/j.scitotenv.2013.07.044
  • ASTM International. D 5905–98. Standard practice for the preparation of substitute wastewater; 1998.
  • U.S. Environmental Protection Agency. Method 1694: pharmaceuticals and personal care products in water, soil, sediment, and biosolids by HPLC/MS/MS; 2007.
  • APHA, Standard methods for examination of water & wastewater [Greenberg AE; Eaton A D, Clesceri LS, editors]; 1998.
  • Rodríguez FA, Mateo MN, Aceves JM, Rivero EP, González I. Electrochemical oxidation of bio-refractory dye in a simulated textile industry effluent using DS electrodes in a filter-press type FM01-LC reactor. Environ Technol. 2013;34:573–583. doi: 10.1080/09593330.2012.706645
  • Nava J, Núñez F, González I. Electrochemical incineration of p-cresol and o-cresol in the filter-press-type FM01-LC electrochemical cell using BDD electrodes in sulfate media at pH 0. Electrochem Acta. 2007;52:3229–3235. doi: 10.1016/j.electacta.2006.09.072
  • Palm JC, Jenkins D, Parker DS. Relationship between organic loading, dissolved oxygen concentration and sludge settleability in the completely-mixed activated sludge process. J Water Pollut Control Fed. 1980;52:2484–2506.
  • Fabianka A, Bialk-Bielinska A, Stepnowski P, Stolte S, Siedlecka EM. Electrochemical degradation of sulfonamides at BDD electrode: kinetics, reaction pathway and eco-toxicity evaluation. J Hazard Mater. 2014;280:579–587. doi: 10.1016/j.jhazmat.2014.08.050
  • Panizza M, Cerisola G. Direct and mediated anodic oxidation of organic pollutants. Chem Rev. 2009;109:6541–6569. doi: 10.1021/cr9001319
  • Murugananthan M, Latha S, Bhaskar Raju G, Yoshihara S. Role of electrolyte on anodic mineralization of atenolol at boron doped diamond and Pt electrodes. Sep Purif Technol. 2011;79:56–62. doi: 10.1016/j.seppur.2011.03.011
  • Mascia M, Vacca A, Polcaro AM, Palmas S, Ruiz JR, Da Pozzo A. Electrochemical treatment of phenolic waters in presence of chloride with boron-doped diamond (BDD) anodes: experimental study and mathematical model. J Hazard Mater. 2010;174:314–322. doi: 10.1016/j.jhazmat.2009.09.053
  • Comninellis Ch. The electrochemical oxidation (or combustion) of organics with simultaneous oxygen evolution. Electrochim Acta. 1994;39:1857–1862. doi: 10.1016/0013-4686(94)85175-1
  • de Amorin KP, Romualdo LL, Andrade LS. Electrochemical degradation of sulfamethoxazole and trimethoprim at boron-doped diamond electrode: performance, kinetics and reaction pathway. Sep Purif Technol. 2013;120:319–327. doi: 10.1016/j.seppur.2013.10.010
  • Panizza M, Michaud PA, Cerisola G, Comninellis Ch. Electrochemical treatment of wastewaters containing organic pollutants on boron-doped diamond electrodes: prediction of specific energy consumption and required electrode area. Electrochem Commun. 2001;3:336–339. doi: 10.1016/S1388-2481(01)00166-7
  • Dominguez-Ramos A, Aldaco R, Irabien A. Electrochemical oxidation of lignosulfonate: total organic carbon oxidation kinetics. Ind Eng Chem Res. 2008;47:9848–9853. doi: 10.1021/ie801109c
  • Dominguez-Ramos A, Aldaco R, Iraben A. Photovoltaic solar electrochemical oxidation (PSEO) for treatment of lignosulfonate wastwater. J Chem Technol Biotechnol. 2010;85:821–830. doi: 10.1002/jctb.2370
  • Garcia-Segura S, Keller J, Brillas E, Radjenovic J. Removal of organic contaminants from secondary effluent by anode oxidation with a boron-doped diamond anode as tertiary treatment. J Hazard Mater. 2015;283:551–557. doi: 10.1016/j.jhazmat.2014.10.003
  • Anglada Á, Urtiaga A, Ortiz I, Mantzavinos D, Diamadopoulos E. Boron-doped diamond anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products. Water Res. 2011;45:828–838. doi: 10.1016/j.watres.2010.09.017
  • Levantesi C, Beimfohr C, Geurkink B, et al. Filamentous alphaproteobacteria associated with bulking in industrial wastewater treatment plants. System Appl Microbiol. 2004;27:716–727. doi: 10.1078/0723202042369974
  • Han WQ, Wang LJ, Sun XY, Li JS. Treatment of bactericide wastewater by combined process chemical coagulation, electrochemical oxidation and membrane bioreactor. J Hazard Mater. 2008;151:306–315. doi: 10.1016/j.jhazmat.2007.05.088

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.