198
Views
13
CrossRef citations to date
0
Altmetric
Articles

Removal of lead by apatite and its stability in the presence of organic acids

, &
Pages 3036-3045 | Received 28 Jul 2015, Accepted 31 Mar 2016, Published online: 04 May 2016

References

  • Park JH, Bolan N, Megharaj M, Naidu R. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soil. Sci Total Environ. 2011;409:853–860. doi: 10.1016/j.scitotenv.2010.11.003
  • Ensley BD. Rationale for use of phytoremediation. In: Raskin I, Ensley BD, editors. Phytoremediation of toxic metals. New York: Willey; 2000. p. 3–11.
  • Zhao LY, Schulin R, Nowack B. The effects of plants on the mobilization of Cu and Zn in soil columns. Environ Sci Technol. 2007;41:2770–2775. doi: 10.1021/es062032d
  • Sayyad G, Afyuni M, Mousavi SF, Abbaspour KC, Richards BK, Schulin R. Transport of Cd, Cu, Pb and Zn in a calcareous soil under wheat and safflower. Geoderma. 2010;154:311–320. doi: 10.1016/j.geoderma.2009.10.019
  • Chen HM, Zheng CR, Tu C, Shen ZG. Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere. 2000;41:229–234. doi: 10.1016/S0045-6535(99)00415-4
  • Kucharski R, Sas-Nowosielska A, Małkowski E, et al. The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant Soil. 2005;273:291–305. doi: 10.1007/s11104-004-8068-6
  • Alvarenga P, Gonçalves AP, Fernandes RM, et al. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Sci Total Environ. 2008;406:43–56. doi: 10.1016/j.scitotenv.2008.07.061
  • Alvarenga P, Gonçalves AP, Fernandes RM, et al. Organic residues as immobilization agents in aided phytostabilization: (I) effects on soil chemical characteristics. Chemosphere. 2009;74:1292–1300. doi: 10.1016/j.chemosphere.2008.11.063
  • Alvarenga P, Palma P, Gonçalves AP, et al. Organic residues as immobilization agents in aided phytostabilization: (II) effects on soil biochemical and ecotoxicological characteristics. Chemosphere. 2009;74:1301–1308. doi: 10.1016/j.chemosphere.2008.11.006
  • Walker DJ, Clemente R, Bernal MP. Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L.in a soil contaminated by pyritic mine waste. Chemosphere. 2004;57:215–224. doi: 10.1016/j.chemosphere.2004.05.020
  • Madejón E, de Mora AP, Felipe E, Burgos P, Cabrera F. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environ Pollut. 2006;139:40–52. doi: 10.1016/j.envpol.2005.04.034
  • Pedron F, Petruzzelli G, Barbafieri M, Tassi E. Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Chemosphere. 2009;75:808–814. doi: 10.1016/j.chemosphere.2009.01.044
  • Margolis HC, Moreno EC. Kinetics of hydroxyapatite dissolution in acetic, lactic, and phosphoric acid solutions. Calcif Tissue Int. 1992;50:137–143. doi: 10.1007/BF00298791
  • Kpomblekou AK, Tabatabai MA. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci. 1994;158:442–453. doi: 10.1097/00010694-199415860-00006
  • Welch SA, Taunton AE, Banfield JF. Effect of microorganisms and microbial metabolites on apatite dissolution. Geomicrobiol J. 2002;19:343–367. doi: 10.1080/01490450290098414
  • Goyne KW, Brantley SL, Chorover J. Effects of organic acids and dissolved oxygen on apatite and chalcopyrite dissolution: implications for using elements as organomarkers and oxymarkers. Chem Geol. 2006;234:28–45. doi: 10.1016/j.chemgeo.2006.04.003
  • Geelhoed JS, Hiemstra T, van Riemsdijk WH. Competitive interaction between phosphate and citrate on goethite. Environ Sci Technol. 1998;32:2119–2123. doi: 10.1021/es970908y
  • Kos B, Leštan D. Chelator induced phytoextraction and in situ soil washing of Cu. Environ Pollut. 2004;132:333–339. doi: 10.1016/j.envpol.2004.04.004
  • Sheng G, Shen R, Dong H, Li Y. Colloidal diatomite, radionichel, and humic substance interaction: a combined batch, XPS, and EXAFS investigation. Environ Sci Pollut Res. 2013;20:3708–3717. doi: 10.1007/s11356-012-1278-1
  • Lang F, Kaupenjohann M. Effect of dissolved organic matter on the precipitation and mobility of the lead compound chloropyromorphite in solution. Eur J Soil Sci. 2003;54:139–148. doi: 10.1046/j.1365-2389.2003.00505.x
  • Dong L, Zhu Z, Qju Y, Zhao J. Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent. Chem Eng J. 2010;165:827–834. doi: 10.1016/j.cej.2010.10.027
  • Debela F, Arocena JM, Thring RW, Whitcombe T. Organic acid-induced release of lead from pyromorphite and its relevance to reclamation of Pb-contaminated soils. Chemosphere. 2010;80:450–456. doi: 10.1016/j.chemosphere.2010.04.025
  • Ma JF, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat II. Oxalic acid detoxifies aluminum internally. Plant Physiol. 1998;117:753–759. doi: 10.1104/pp.117.3.753
  • Jones DL, Dennis PG, Owen AG, van Hees PAW. Organic acid behavior in soils – misconceptions and knowledge gaps. Plant Soil. 2003;248:31–41. doi: 10.1023/A:1022304332313
  • Mavropoulos E, Rossi AM, Costa AM, Perez CAC, Moreira JC, Saldanha M. Studies of the mechanisms of lead immobilization by hydroxyapatite. Environ Sci Technol. 2002;36:1625–1629. doi: 10.1021/es0155938
  • Furuta S, Katsuki H, Komarneni S. Porus hydroxyapatite monoliths from gypsum waste. J Mater Chem. 1998;8:2803–2806. doi: 10.1039/a806659k
  • Katoh M, Matsuoka H, Sato T. Stability of lead immobilized by apatite in lead-containing rhizosphere soil of buckwheat (Fagopyrum esculentum) and hairy vetch (Vicia villosa). Int J Phytoremediation. 2015;17:604–611. doi: 10.1080/15226514.2014.950413
  • Katoh M, Masaki S, Sato T. Single-step extraction to determine soluble lead levels in soil. Int J GEOMATE. 2012;3:375–380.
  • Katoh M, Matsuoka H, Hattori T, Sato T. Lead sorption from aqueous solution using apatite and residue ash recovered from sewage sludge ash. J JSCE Ser G (Environ Res). 2013;69: III_281–III_290 (in Japanese with English abstract).
  • Ogawa S, Katoh M, Sato T. Contribution of hydroxyapatite and ferryhydrite in combined applications for the removal of lead and antimony form aqueous solutions. Water Air Soil Pollut. 2014;225:2023. doi: 10.1007/s11270-014-2023-9
  • Jones DL, Brassington DS. Sorption of organic acids in acid soils and its implications in the rhizosphere. Eur J Soil Sci. 1998;49:447–455. doi: 10.1046/j.1365-2389.1998.4930447.x
  • van Hees PAW, Jones DL, Godbold DL. Biodegradation of low molecular weight organic acids in coniferous forest podzolic soils. Soil Biol Biochem. 2002;34:1261–1272. doi: 10.1016/S0038-0717(02)00068-8
  • Cao X, Ma LQ, Rhue DR, Appel CS. Mechanisms of lead, copper, and zinc retention by phosphate rock. Environ Pollut. 2004;131:435–444. doi: 10.1016/j.envpol.2004.03.003
  • Dybowska A, Manning DAC, Collins MJ, Wess T, Woodgate S, Valsami-Jones E. An evaluation of the reactivity of synthetic and natural apatites in the presence of aqueous metals. Sci Total Environ. 2009;407:2953–2965. doi: 10.1016/j.scitotenv.2008.12.053
  • Zhang Z, Li M, Chen W, Zhu S, Liu N, Zhu L. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Environ Pollut. 2010;158:514–519. doi: 10.1016/j.envpol.2009.08.024
  • Pham Minh D, Tran ND, Nzihou A, Sharrock P. Calcium phosphate based materials starting from calcium carbonate and orthophosphoric acid for the removal of lead(II) from an aqueous solution. Chem Eng J. 2014;243:280–288. doi: 10.1016/j.cej.2014.01.032
  • Chand P, Pakade YB. Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution. Environ Sci Pollut Res. 2015;22:10919–10929. doi: 10.1007/s11356-015-4276-2
  • Mortada WI, Kenawy IMM, Abdelghany AM, Ismail AM, Donia AF, Nabieh KA. Determination of Cu2+, Zn2+ and Pb2+ in biological and food samples by FAAS after preconcentration with hydroxyapatite nanorods originated from eggshell. Mater Sci Eng C. 2015;52:288–296. doi: 10.1016/j.msec.2015.03.061
  • Ma QY, Logan T, Traina SJ. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environ Sci Technol. 1995;29:1118–1126. doi: 10.1021/es00004a034
  • Oliva J, De Pablo J, Cortina JL, Cama J, Ayora C. The use of Apatite IITM to remove divalent metal ions zinc(II), lead(II), manganese(II) and iron(II) from water in passive treatment systems: column experiments. J Hazard Mater. 2010;184:364–374. doi: 10.1016/j.jhazmat.2010.08.045
  • Oliva J, Cama J, Cortina JL, Ayora C, De Pablo J. Biogenic hydroxyapatite (Apatite IITM) dissolution kinetics and metal removal from acid mine drainage. J Hazard Mater. 2012;213–214:7–18. doi: 10.1016/j.jhazmat.2012.01.027
  • Suzuki T, Hatsushika T, Hayakawa Y. Synthetic hydroxyapatite employed as inorganic cation exchangers. J Chem Soc Faraday Trans. 1981;77:1059–1062. doi: 10.1039/f19817701059
  • Pham Minh D, Tran ND, Nzihou A, Sharrock P. Hydroxyapatite gel for the improved removal of Pb2+ ions from aqueous solution. Chem Eng J. 2013;232:128–138. doi: 10.1016/j.cej.2013.07.086
  • Wu L, Forsling W, Schindler PW. Surface complexation of calcium minerals in aqueous solution. J Colloid Interf Sci. 1991;147:178–185. doi: 10.1016/0021-9797(91)90145-X
  • Singh SK, Chandel CPS. Electrochemical studies on mixed ligand complexes of lead ion with dl-3(3, 4-dihydroxy phenyl) alanine and some dicarboxylic acids. Asian J Chem. 2002;14:53–56.
  • Stability Constants Database and Mini-SCDatabase. IUPAC and Academic Software. Version 5.3. Sourby Old Farm, Timble, Otley, Yorks. UK. 2003. [email protected].
  • Tõnsuaadu K, Viipsi K, Trikkel A. EDTA impact on Cd2+ migration in apatite-water system. J Hazard Mater. 2008;154:491–497. doi: 10.1016/j.jhazmat.2007.10.051
  • Viispi K, Sjöberg S, Tõnsuaadu K, Shchukarev A. Hydroxy- and fluorapatite as sorbents in Cd(II)-Zn(II) multi-component solutions in the absence/presence of EDTA. J Hazard Mater. 2013;252–253:91–98. doi: 10.1016/j.jhazmat.2013.02.034
  • Scheckel KG, Ryan JA. Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite. Environ Sci Technol. 2002;36:2198–2204. doi: 10.1021/es015803g

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.