185
Views
4
CrossRef citations to date
0
Altmetric
Articles

Influence on the generation of disinfection byproducts in a tannic acid solution by aluminum ions

, &
Pages 1100-1110 | Received 10 Mar 2016, Accepted 23 Jul 2016, Published online: 17 Aug 2016

References

  • Richardson S. New disinfection by-product issues: emerging DBPs and alternative routes of exposure. Global NEST J. 2005;7:43–60.
  • USEPA. National primary drinking water regulations: stage 2. Disinfectants and disinfection by-products rule. Fed Reg. 2006;71:387–493.
  • McKie MJ, Taylor-Edmonds Liz, Andrews SA, Andrews RC. Engineered biofiltration for the removal of disinfection by-product precursors and genotoxicity. Water Res. 2015;81:196–207. doi: 10.1016/j.watres.2015.05.034
  • Kim D, Amy GL, Karanfil T. Disinfection byproduct formation during seawater desalination: a review. Water Res. 2015;81:343–355. doi: 10.1016/j.watres.2015.05.040
  • Gan WH, Sharrna VK, Zhang X, Yang L, Yang X. Investigation of disinfection byproducts formation in ferrate(VI) pre-oxidation of NOM and its model compounds followed by chlorination. J Hazard Mater. 2015;292:197–204. doi: 10.1016/j.jhazmat.2015.02.037
  • Xie YF. Disinfection byproducts in drinking water: formation, analysis, and control. Boca Raton (FL): CRC Press; 2004.
  • Gallard H, von Gunten U. Chlorination of natural organic matter: kinetics of chlorination and of THM formation. Water Res. 2002;36:65–74. doi: 10.1016/S0043-1354(01)00187-7
  • Hua GH, Reckhow DA. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size. Environ Sci Technol. 2007;41:3309–3315. doi: 10.1021/es062178c
  • Chang MY, Juang RS. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J Colloid Interf Sci. 2004;278:18–25. doi: 10.1016/j.jcis.2004.05.029
  • Chung K, Wong T, Wei C, Huang Y, Lin Y. Tannins and human health: a review. Crit Rev Food Sci Nutr. 1998;38:421–464. doi: 10.1080/10408699891274273
  • Campinas M, João Rosa M. Removal of microcystins by PAC/UF. Sep Purif Technol. 2010;71:114–120. doi: 10.1016/j.seppur.2009.11.010
  • Campinas M, João Rosa M. Assessing PAC contribution to the NOM fouling control in PAC/UF systems. Water Res. 2010;44:1636–1644. doi: 10.1016/j.watres.2009.11.012
  • Yamamoto H, Liljestrand H, Shimizu Y, Morita M. Effects of physical−chemical characteristics on the sorption of selected endocrine disruptors by dissolved organic matter surrogates. Environ Sci Technol. 2003;37:2646–2657. doi: 10.1021/es026405w
  • Lu ZY, Jiang BC, Li AM, et al. Competitive adsorption of tannic acid and phenol onto a bi-functional polymeric adsorbent. Acta Chim Sinica. 2010;68:437–442.
  • Wu QY, Hu HY, Zhao X, Sun YX. Effect of chlorination on the estrogenic/antiestrogenic activities of biologically treated wastewater. Environ Sci Technol. 2009;43:4940–4945. doi: 10.1021/es8034329
  • Lin YL, Chiang PC, Chang EE. Removal of small trihalomethane precursors from aqueous solution by nanofiltration. J Hazard Mater. 2007;146:20–29. doi: 10.1016/j.jhazmat.2006.11.050
  • Liu J, Li X. Biodegradation and biotransformation of wastewater organics as precursors of disinfection byproducts in water. Chemosphere. 2010;81:1075–1083. doi: 10.1016/j.chemosphere.2010.09.041
  • Liu SG, Zhu ZL, Qiu YL, Zhao J. Effect of ferric and bromide ions on the formation and speciation of disinfection byproducts during chlorination. J Environ Sci China. 2011;23:765–772. doi: 10.1016/S1001-0742(10)60474-3
  • Zhang H, Andrews SA. Catalysis of copper corrosion products on chlorine decay and HAA formation in simulated distribution systems. Water Res. 2012;46:2665–2673. doi: 10.1016/j.watres.2012.02.028
  • Chan LC, Raymond MH, William AA. Degradation of drinking water disinfection byproducts by synthetic goethite and magnetite. Environ Sci Technol. 2005;39:8525–8532. doi: 10.1021/es051044g
  • Blatchley ER, Margetas D, Duggirala R. Copper catalysis in chloroform formation during water chlorination. Water Res. 2003;37:4385–4394. doi: 10.1016/S0043-1354(03)00404-4
  • Wang WD, Yang HW, Wang XC, Jiang J, Zhu W. Effects of fulvic acid and humic acid on aluminum speciation in drinking water. J Environ Sci. 2010;22:211–217. doi: 10.1016/S1001-0742(09)60095-4
  • Fang SF, Pei H, Liu ZH, Beven K, Wei Z. Water resources assessment and regional virtual water potential in the Turpan Basin, China. Water Resour Manag. 2010;24:3321–3332. doi: 10.1007/s11269-010-9608-x
  • Van Alstyne R, McDowell LR, Davisa PA, Wilkinson NS, O’Connor GA. Effects of an aluminum-water treatment residual on performance and mineral status of feeder lambs. Small Ruminant Res. 2007;73:77–86. doi: 10.1016/j.smallrumres.2006.11.002
  • Yan MQ, Wang DS, Qu J, Ni JR, Chow CWK. Enhanced coagulation for high alkalinity and micro-polluted water: the third way through coagulant optimization. Water Res. 2008;42:2278–2286. doi: 10.1016/j.watres.2007.12.006
  • Campbell A, Becaria A, Lahiri DK, Sharman K, Bondy SC. Chronic exposure to aluminium in drinking water increases inflammatory parameters selectivity in the brain. J Neurosci Res. 2004;75:565–572. doi: 10.1002/jnr.10877
  • Falten TP. Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res Bull. 2001;55:187–196. doi: 10.1016/S0361-9230(01)00459-2
  • Zatta P, Lucchini R, Van Rensburg SJ, Taylor A. The role of metals in neurodegenerative processes: aluminium, manganese, and zinc. Brain Res Bull. 2003;62:15–28. doi: 10.1016/S0361-9230(03)00182-5
  • Khanhuathon Y, Siriangkhawut W, Chantiratikul P, Grudpan K. Spectrophotometric method for determination of aluminium content in water and beverage samples employing flow-batch sequential injection system. J Food Compos Anal. 2015;41:45–53. doi: 10.1016/j.jfca.2015.02.002
  • Wang XR, Chen ZL, Wang BY, et al. Effect of tannic acid on coagulation and flocs morphology. Energy Sci Res. 2012;29:51–58.
  • Jelel M. Interactions of humic acids and aluminum salts in the flocculation process. Water Res. 1986;20:1535–1542. doi: 10.1016/0043-1354(86)90118-1
  • Weng LP, Temminghoff EJM, Van Riemsdijk WH. Aluminum speciation in natural waters: measurement using Donnan membrane technique and modeling using NICA-Donnan. Water Res. 2002;36:4215–4226. doi: 10.1016/S0043-1354(02)00166-5
  • APHA, AWWA, WEF. editors. Standard methods for the examination of water and wastewater. 19th ed. Washington (DC): American Public Health Association; 1995.
  • Aiken GR. A critical evaluation of the use of macroporous resins for the isolation of aquatic humic substances. In: Frimmel FH, Christman RF, editors. Humic substances and their role in the environment, Wiley environment. New York: Wiley; 1988. p. 15–28.
  • Symons JM, Xia R, Diehl AC, et al. The influence of operational variables on the formation of dissolved organic halogen during chloramination. ACS Symp. 1996;649:78–104.
  • USEPA Method 551.1. Determination of chlorination disinfection by-products, chlorination solvents, and, halogenated pesticides/herbicides in drinking water by liquid-liquid extraction and gas chromatography with electron-capture detection; 1998.
  • USEPA Method 552.2. Determination of haloacetic acids and dalapon in drinking water by liquid-liquid extraction, derivatization and gas chromatography with electron capture detection; 1998.
  • Chen W, Westerhoff P, Leenheer JA, Booksh K. Fluorescence excitation–emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol. 2003;37:5701–5710. doi: 10.1021/es034354c
  • Bull RJ, Kopfler FC. Health effects of disinfectants and disinfection by-products. Denver (CO): AWWARF; 1991.
  • Tsutomu O. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Technol. 2002;36:742–746. doi: 10.1021/es0155276
  • Lethron A. The effect of alkaline earth metal ions on the formation of disinfection by-products in drinking water [M.Sc. thesis]. Perth, (WA): Department of Applied Chemistry, Curtin University of Technology; 2005.
  • Nagar R, Sarkar D, Makri SKC, Datta R. Effect of solution chemistry on arsenic sorption by Fe- and Al-based drinking-water treatment residuals. Chemosphere. 2010;78:1028–1035. doi: 10.1016/j.chemosphere.2009.11.034
  • Liu J, Bi SP, Yang L, et al. Speciation analysis of aluminium(III) in natural waters and biological fluids by complexing with various catechols followed by differential pulse voltammetry detection. Analyst. 2002;127:1657–1665. doi: 10.1039/b205559g
  • Pesavento M, Alberti G. Determination of the complexing properties of drinking waters toward copper(II) and aluminium(III) by ligand titration. Water Res. 2000;34:4482–4492. doi: 10.1016/S0043-1354(00)00218-9
  • Liu XW, Chen ZL, Wang LL, et al. Effects of metal ions on THMs and HAAs formation during tannic acid chlorination. Chem Eng J. 2012;211–212:179–185. doi: 10.1016/j.cej.2012.09.014
  • Fu J, Qu J, Liu R, Qiang Z, Liu H, Zhao X. Cu(II)-catalyzed THM formation during water chlorination and monochloramination: a comparison study. J Hazard Mater. 2009;170:58–65. doi: 10.1016/j.jhazmat.2009.04.133
  • Navalon S, Alvaro M, Garcia H. Ca2+ and Mg2+ present in hard waters enhance trihalomethane formation. J Hazard Mater. 2009;169:901–906. doi: 10.1016/j.jhazmat.2009.04.031
  • Chu WH, Gao NY, Deng Y. Formation of haloacetamides during chlorination of dissolved organic nitrogen aspartic acid. J Hazard Mater. 2010;173:82–86. doi: 10.1016/j.jhazmat.2009.08.051
  • Liu JL, Li XY, Xie YF, Tang H. Characterization of soluble microbial products as precursors of disinfection byproducts in drinking water supply. Sci Total Environ. 2014;472:818–824. doi: 10.1016/j.scitotenv.2013.11.139
  • Villanueva CM, Kogevinas M, Grimalt JO. Haloacetic acids and trihalomethanes in finished drinking waters from heterogeneous sources. Water Res. 2003;37:953–958. doi: 10.1016/S0043-1354(02)00411-6
  • Huang L, Yu DQ. Application of UV spectrum in organic chemistry (II). Beijing: Science Press; 1988.
  • Lin L, Xu B, Lin YL, et al. A comparison of carbonaceous, nitrogenous and iodinated disinfection by-products formation potential in different dissolved organic fractions and their reduction in drinking water treatment processes. Sep Purif Technol. 2014;133:82–90. doi: 10.1016/j.seppur.2014.06.046
  • Jiao JJ, Zhang YF, Fang LY, et al. Electrolyte effect on the aggregation behavior of 1-buty1-3-methylimidazolium dodecylsulfate in aqueous solution. J Colloid Interf Sci. 2013;402:139–145. doi: 10.1016/j.jcis.2013.03.027
  • Morris WA, Liu TD, Fraser CL. Mechanochromic luminescence of halide-substituted difluoroboron beta-diketonate dyes. J Mater Chem C. 2015;3:352–363. doi: 10.1039/C4TC02268H
  • Oliver BG. Dihaloacetonitriles in drinking water: algae and fulvic acid as precursors. Environ Sci Technol. 1983;17:80–83. doi: 10.1021/es00108a003
  • Ahmad SR, Reynolds DM. Monitoring of water quality using fluorescence technique: prospect of on-line process control. Water Res. 1999;33:2069–2074. doi: 10.1016/S0043-1354(98)00435-7
  • Determann S, Reuter R, Wagner P, Willkomm R. Fluorescent matter in the eastern Atlantic Ocean. Part 1: method of measurement and near-surface distribution. Deep Sea Res Part I. 1994;41:659–675. doi: 10.1016/0967-0637(94)90048-5
  • Mounier S, Patel N, Quilici L, Benaim JY, Benamou C. Fluorescence 3D de la matière organique dissoute du fleuve amazone: three-dimensional fluorescence of the dissolved organic carbon in the Amazon river. Water Res. 1999;33:1523–1533. doi: 10.1016/S0043-1354(98)00347-9
  • Coble PG. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem. 1996;51:325–346. doi: 10.1016/0304-4203(95)00062-3
  • Ismaili MM, Belin C, Lamotte M, et al. Distribution et caractérisation par fluorescence de la matiére organique dissoute dans les eaux de la Manche centrale Oceanol. Acta. 1998;21:645–654.
  • Reynolds DM, Ahmad SR. Rapid and direct determination of wastewater BOD values using a fluorescence technique. Water Res. 1997;31:2012–2018. doi: 10.1016/S0043-1354(97)00015-8
  • Artinger R, Buckau G, Geyer S, Fritz P, Wolf M, Kim JI. Characterization of groundwater humic substances: influence of sedimentary organic carbon. Appl Geochem. 2000;15:97–116. doi: 10.1016/S0883-2927(99)00021-9
  • Miano T, Sposito G, Martin JP. Fluorescence spectroscopy of model humic acid-type polymers. Geoderma. 1990;47:349–359. doi: 10.1016/0016-7061(90)90038-B
  • Mounier S, Braucher R, Benaim JY. Differentiation of organic matter’s properties of the Rio Negro basin by cross-flow ultra-filtration and UV-spectrofluorescence. Water Res. 1999;33:2363–2373. doi: 10.1016/S0043-1354(98)00456-4
  • Singleton VL. Naturally occurring food toxicants: phenolic substances of plant origin common in foods. Adv Food Res. 1981;27:149–242. doi: 10.1016/S0065-2628(08)60299-2
  • Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev. 1998;56:317–333. doi: 10.1111/j.1753-4887.1998.tb01670.x
  • King A, Young G. Characteristics and occurrence of phenolic phytochemicals. J Am Diet Assoc. 1999;99:213–218. doi: 10.1016/S0002-8223(99)00051-6
  • Kim TJ, Silva JL, Jung YS. Enhanced functional properties of tannic acid after thermal hydrolysis. Food Chem. 2011;126:116–120. doi: 10.1016/j.foodchem.2010.10.086
  • Qin L, Liu J, Li GS, Kang Y. Removal of tannic acid by chitosan and N-hydroxypropyl trimethyl ammonium chloride chitosan: flocculation mechanism and performance. J Disper Sci Technol. 2015;36:695–702. doi: 10.1080/01932691.2014.917357
  • Madhan B, Aravindhan R, Siva MS, et al. Nair interaction of aluminum and hydrolysable tannin polyphenols: an approach to understanging the mechanism of aluminum vegetable combination tannage. J Am Leather Chem As. 2006;101:317–323.
  • Korshin GV, Li CW, Benjamin MM. Monitoring the properties of natural organic matter through UV spectroscopy: a consistent theory. Water Res. 1997;31:1787–1795. doi: 10.1016/S0043-1354(97)00006-7
  • Shah AD, Liu ZQ, Salhi E, et al. Von Peracetic acid oxidation of saline waters in the absence and presence of H2O2: secondary oxidant and disinfection byproduct formation. Environ Earth Sci. 2015;49:1698–1705.
  • Hu YF, Xu RK, Dynes JJ, et al. Coordination nature of aluminum (oxy)hydroxides formed under the influence of tannic acid studied by X-ray absorption spectroscopy. Geochim Cosmochim Ac. 2008;72:1959–1969. doi: 10.1016/j.gca.2008.02.002
  • Wang T, Jiang X, Wang CY, Wang F, Bian Y, Yu G. Adsorption of phenanthrene on Al (oxy) hydroxides formed under the influence of tannic acid. Environ Earth Sci. 2014;71:773–782. doi: 10.1007/s12665-013-2479-8
  • Brooks E, Freeman C, Gough R, Holliman P. Tracing dissolved organic carbon and trihalomethane formation potential between source water and finished drinking water at a lowland and an upland UK catchment. Sci Total Environ. 2015;537:203–212. doi: 10.1016/j.scitotenv.2015.08.017
  • Chang EE, Chiang PC, Ko YW, Lan WH. Characteristics of organic precursors and their relationship with disinfection by-products. Chemosphere. 2001;44:1231–1236. doi: 10.1016/S0045-6535(00)00499-9
  • Gopal K, Tripathy SS, Bersillon JL, Dubey SP. Chlorination byproducts, their toxicodynamics and removal from drinking water. J Hazard Mater. 2007;140:1–6. doi: 10.1016/j.jhazmat.2006.10.063

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.