703
Views
19
CrossRef citations to date
0
Altmetric
Articles

Synthesis and characterization of Cu–Zn/TiO2 for the photocatalytic conversion of CO2 to methane

, , , &
Pages 1085-1092 | Received 25 Apr 2016, Accepted 22 Jul 2016, Published online: 16 Aug 2016

References

  • Liou P-Y, Chen S-C, Wu JCS, et al. Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy Environ Sci. 2011;4:1487–1494. doi: 10.1039/c0ee00609b
  • Chang X, Zheng J, Gondal MA, Ji G. Photocatalytic conversion of CO2 into value-added hydrocarbon (methanol) with high selectivity over ZnS nanoparticles driven by 355-nm pulsed laser. Res Chem Intermed. 2015;41:739–747. doi: 10.1007/s11164-013-1224-y
  • Tseng I, Chang W, Wu JCS. Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl Catal B Environ. 2002;37:37–48. doi: 10.1016/S0926-3373(01)00322-8
  • Tajmehr M, Rahimpour F, Sharifnia S. Direct photoreduction of carbon dioxide with CuO doped TiO2. International Conference on Chemical, Biological and Medical Sciences; 2012; Kuala Lumpur; p. 29–30.
  • Roy SC, Varghese OK, Paulose M, Grimes CA. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano. 2010;4:1259–1278. doi: 10.1021/nn9015423
  • Laws EA, Berning JL. Photosynthetic efficiency optimization studies with the macroalga Gracilaria tikvihae: implications for CO2 emission control from power plants. Bioresour Technol. 1991;37:25–33. doi: 10.1016/0960-8524(91)90108-V
  • Wang W, Wang S, Ma X, Gong J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev. 2011;40:3703–3727. doi: 10.1039/c1cs15008a
  • Wang WN, Soulis J, Jeffrey Yang Y, Biswas, P Comparison of CO2 photoreduction systems: a review. Aerosol Air Qual Res. 2014;14:533–549.
  • Thampi KRK, Kiwi J, Graetzel M. Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature. 1987;327:506–508. doi: 10.1038/327506a0
  • Ishitani O, Inoue C, Suzuki Y, Ibusuki T. Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J Photochem Photobiol A Chem. 1993;72:269–271. doi: 10.1016/1010-6030(93)80023-3
  • Wang ZY, Chou HC, Wu JCS, Tsai DP, Mul G. CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy. Appl Catal A Gen. 2010;380:172–177. doi: 10.1016/j.apcata.2010.03.059
  • Koci K, Mateju K, Hospodková A, et al. Applied catalysis B: environmental effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl Catal B Environ. 2010;96:239–244. doi: 10.1016/j.apcatb.2010.02.030
  • Nguyen TV, Wu JCS. Photoreduction of CO2 in an optical-fiber photoreactor: effects of metals addition and catalyst carrier. Appl Catal A Gen. 2008;335:112–120. doi: 10.1016/j.apcata.2007.11.022
  • Shawabkeh R, Hussein I, Ahmad W, Rana A. Synthesis of a new Cu-aluminosilicate catalyst for CO2 capture and conversion to hydrocarbons. Proceedings of 4th International Gas Processing Symposium; Qatar: Elsevier; 2015.
  • Ahmad W, Al-Matar A, Shawabkeh R, Rana A. An experimental and thermodynamic study for conversion of CO2 to CO and methane over Cu-K/Al2O3. J Environ Chem Eng. 2016;4:2725–2735. doi: 10.1016/j.jece.2016.05.019
  • Patri A, Umbreit T, Zheng J, et al. Energy dispersive X-ray analysis of titanium dioxide nanoparticle distribution after intravenous and subcutaneous injection in mice. J Appl Toxicol. 2009;29:662–672. doi: 10.1002/jat.1454
  • Yoong LS, Chong FK, Dutta BK. Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy. 2009;34:1652–1661. doi: 10.1016/j.energy.2009.07.024
  • Zhang H, Lu H, Zhu Y, et al. Preparations and characterizations of new mesoporous ZrO2 and Y2O3-stabilized ZrO2 spherical powders. Powder Technol. 2012;227:9–16. doi: 10.1016/j.powtec.2012.02.007
  • Alvar EN, Rezaei M, Alvar HN. Synthesis of mesoporous nanocrystalline MgAl2O4 spinel via surfactant assisted precipitation route. Powder Technol. 2010;198:275–278. doi: 10.1016/j.powtec.2009.11.019
  • Behnajady MA, Eskandarloo H. Silver and copper co-impregnated onto TiO2-P25 nanoparticles and its photocatalytic activity. Chem Eng J. 2013;228:1207–1213. doi: 10.1016/j.cej.2013.04.110
  • Gao D, Wang Q, Qiao H, et al. Preparation and characterization of porous TiO2 fibers and their photocatalytic activity. J Eng Fiber Fabr. 2012;94:94–98.
  • Gao B, Chen GZ, Li Puma G. Carbon nanotubes/titanium dioxide (CNTs/TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol-gel methods exhibiting enhanced photocatalytic activity. Appl Catal B Environ. 2009;89:503–509. doi: 10.1016/j.apcatb.2009.01.009
  • Theivasanthi T, Alagar M. Titanium dioxide (TiO2) nanoparticles XRD analyses: an insight. arXiv. 2013; 1307–1316.
  • Thamaphat K, Limsuwan P, Ngotawornchai B. Phase characterization of TiO2 powder by XRD and TEM. Nat Sci. 2008;42:357–361.
  • Gajendiran J, Rajendran V. PVA assisted copper (Cu) @ cuprous oxide (Cu2O) nanostructures via hydrothermal method. Der Pharma Chem. 2012;4:1879–1882.
  • Theivasanthi T, Alagar M. X-ray diffraction studies of copper nanopowder. Arxiv Prepr. arXiv1003.6068. 2010; 1003–1008.
  • Tsai CY, Hsi HC, Kuo TH, et al. Preparation of Cu-doped TiO2 photocatalyst with thermal plasma torch for low-concentration mercury removal. Aerosol Air Qual Res. 2013;13:639–648.
  • Lanje AS, Sharma SJ, Pode RB, et al. Synthesis and optical characterization of copper oxide nanoparticles. Adv Appl Sci Res. 2010;1:36–40.
  • Kobayashi Y, Abe Y, Maeda T, Yasuda Y, Morita T. A metal–metal bonding process using metallic copper nanoparticles produced by reduction of copper oxide nanoparticles. J Mater Res Technol. 2014;3:114–121. doi: 10.1016/j.jmrt.2013.12.003
  • Lv JJ, Li MY, Zeng QX. Preparation and characterization of copper oxide and copper nanoparticles. Adv Mater Res. 2011;308–310:715–721. doi: 10.4028/www.scientific.net/AMR.308-310.715
  • Cho S, Jang J-W, Lee JS, Lee K-H. Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays. Nanoscale. 2010;2:2199–2202. doi: 10.1039/c0nr00278j
  • Rusu D, Rusu G, Luca D. Structural characteristics and optical properties of thermally oxidized Zinc films. Acta Phys Pol A. 2011;119:850–856. doi: 10.12693/APhysPolA.119.850
  • Mai NT, Thuy TT, Mott DM, Maenosono S. Chemical synthesis of blue-emitting metallic zinc nano-hexagons. Cryst Eng Comm. 2013;15:6606–6610. doi: 10.1039/c3ce40801a
  • Zhong Z, Clouser S, Vanek D. Selective brush plating a tin-zinc alloy for sacrificial corrosion protection. NASF Surface Technology White Papers. 2014;78:1–10.
  • Talam S, Karumuri SR, Gunnam N. Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol. 2012;2012:1–6. doi: 10.5402/2012/372505
  • Prajapati CS, Sahay PP. Effect of precursors on structure, optical and electrical properties of chemically deposited nanocrystalline ZnO thin films. Appl Surf Sci. 2012;258:2823–2828. doi: 10.1016/j.apsusc.2011.10.141
  • Wu D, Jiang Y, Liu J, et al. Template route to chemically engineering cavities at nanoscale: a case study of Zn(OH)2 template. Nanoscale Res Lett. 2010;5:1779–1787. doi: 10.1007/s11671-010-9711-1
  • Krishnakumar V, Mohan Kumar K, Mandal BK, Khan FN. Zinc oxide nanoparticles catalyzed condensation reaction of isocoumarins and 1,7-heptadiamine in the formation of bis-isoquinolinones. Sci World J. 2012;2012:1–7. doi: 10.1100/2012/619080
  • Li Z, Hou B, Xu Y, et al. Comparative study of sol-gel-hydrothermal and sol-gel synthesis of titania-silica composite nanoparticles. J Solid State Chem. 2005;178:1395–1405. doi: 10.1016/j.jssc.2004.12.034
  • Yan X, He J, Evans DG, Zhu Y, Duan X. Preparation, characterization and photocatalytic activity of TiO2 formed from a mesoporous precursor. J Porous Mater. 2004;11:131–139. doi: 10.1023/B:JOPO.0000038008.86521.9a
  • Riaz N, Bustam MA, Chong FK, Man ZB, Khan MS, Shariff AM. Photocatalytic degradation of DIPA using bimetallic Cu-Ni/TiO2 photocatalyst under visible light irradiation. Sci World J. 2014;2014:1–8.
  • Weng WZ, Chen MS, Yan QG, et al. Mechanistic study of partial oxidation of methane to synthesis gas over supported rhodium and ruthenium catalysts using in situ time-resolved FTIR spectroscopy. Catal Today. 2000;63:317–326. doi: 10.1016/S0920-5861(00)00475-2
  • Schultz CP, Eysel HH, Mantsch HH, Jackson M. Carbon dioxide in tissues, cells, and biological fluids detected by FTIR spectroscopy. J Phys Chem. 1996;100:6845–6848. doi: 10.1021/jp953254t
  • Behrens H, Stuke A. Quantification of H2O contents in silicate glasses using IR spectroscopy – a calibration based on hydrous glasses analyzed by Karl-Fischer titration. Glas Sci Technol. 2003;76:176–189.
  • Pandey KK. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci. 1999;71:1969–1975. doi: 10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D
  • Contreras MP, Avula RY, Singh RK. Evaluation of nano zinc (ZnO) for surface enhancement of ATR-FTIR spectra of butter and spread. Food Bioprocess Technol. 2010;3:629–635. doi: 10.1007/s11947-009-0237-4
  • Bjorgen M, Lillerud K, Olsbye U, Bordiga S, Zecchina A. 1-Butene oligomerization in bronsted acidic zeolites: mechanistic insights from low-temperature in situ FTIR spectroscopy. J Phys Chem B. 2004;108:7862–7870. doi: 10.1021/jp0377836

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.