249
Views
3
CrossRef citations to date
0
Altmetric
Articles

Stabilization of carbon dioxide and chromium slag via carbonation

, , , , &
Pages 1997-2002 | Received 15 Mar 2016, Accepted 28 Sep 2016, Published online: 21 Oct 2016

References

  • Kotaś J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation. Environ Pollut. 2000;107:263–283. doi: 10.1016/S0269-7491(99)00168-2
  • Rehr AP, Small MJ, Matthews HS, et al. Economic sources and spatial distribution of airborne chromium risks in the U.S. Environ Sci Technol. 2010;44:2131–2137. doi: 10.1021/es9013085
  • Gao Y, Xia J. Chromium contamination accident in China: viewing environment policy of China. Environ Sci Technol. 2011;45:8605–8606. doi: 10.1021/es203101f
  • Geelhoed JS, Meeussen JCL, Lumsdon DG, et al. Modelling of chromium behaviour and transport at sites contaminated with chromite ore processing residue: implications for remediation methods. Environ Geochem Health. 2001;23:261–265. doi: 10.1023/A:1012257522421
  • Farmer JG, Graham MC, Thomas RP, et al. Assessment and modeling of the environmental chemistry and potential for remediative treatment of chromium-contaminated land. Environ Geochem Health. 1999;21:331–337. doi: 10.1023/A:1006788418483
  • Adam V, Quaranta G, Loyaux-Lawniczak S. Terrestrial and aquatic ecotoxicity assessment of Cr(VI) by the ReCiPe method calculation (LCIA): application on an old industrial contaminated site. Environ Sci Pollut Res Int. 2013;20:3312–3321. doi: 10.1007/s11356-012-1254-9
  • Dhal B, Thatoi HN, Das NN, et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater. 2013;250–251:272–291. doi: 10.1016/j.jhazmat.2013.01.048
  • Chai L, Huang S, Yang Z, et al. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag. J Hazard Mater. 2009;167:516–522. doi: 10.1016/j.jhazmat.2009.01.030
  • Chai LY, Huang SH, Yang ZH, et al. Hexavalent chromium reduction by Pannonibacter phragmitetus BB isolated from soil under chromium-containing slag heap. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2009;44:615–622. doi: 10.1080/10934520902784690
  • Achal V, Pan X, Lee DJ, et al. Remediation of Cr(VI) from chromium slag by biocementation. Chemosphere. 2013;93:1352–1358. doi: 10.1016/j.chemosphere.2013.08.008
  • Wang T, He M, Pan Q. A new method for the treatment of chromite ore processing residues. J Hazard Mater. 2007;149:440–444. doi: 10.1016/j.jhazmat.2007.04.009
  • Panda CR, Mishra KK, Panda KC, et al. Environmental and technical assessment of ferrochrome slag as concrete aggregate material. Constr Build Mater. 2013;49:262–271. doi: 10.1016/j.conbuildmat.2013.08.002
  • Yang YG, Xu JH, Cai B, et al. Synthesis and applications of black ceramic from recycled industrial wastes. Adv Appl Ceram. 2013;112:146–148. doi: 10.1179/1743676112Y.0000000047
  • Yu B, Zhang H, Xu W, et al. Remediation of chromium-slag leakage with electricity cogeneration via a urea-Cr(VI) cell. Sci Rep. 2014;4:5860. doi: 10.1038/srep05860
  • Kanchinadham SBK, Loganathan VD, Kalyanaraman C. A preliminary study on leachability of chromium from a contaminated site. Environ Prog Sustain Energy. 2013;32:1096–1100. doi: 10.1002/ep.11722
  • Yang ZH, Chai LY, Wang YY, et al. Selective leaching of chromium-containing slag by HCl. J Cent South Univ Technol. 2008;15:824–829. doi: 10.1007/s11771-008-0152-2
  • Macdowell N, Florin N, Buchard A, et al. An overview of CO2 capture technologies. Energy Environ Sci. 2010;3:1645–1669. doi: 10.1039/c004106h
  • Kenarsari SD, Yang D, Jiang G, et al. Review of recent advances in carbon dioxide separation and capture. RSC Adv. 2013;3:22739–22773. doi: 10.1039/c3ra43965h
  • Lin Y, Kong C, Chen L. Direct synthesis of amine-functionalized MIL-101(Cr) nanoparticles and application for CO2 capture. RSC Adv. 2012;2:6417–6419. doi: 10.1039/c2ra20641b
  • Yu J, Le Y, Cheng B. Fabrication and CO2 adsorption performance of bimodal porous silica hollow spheres with amine-modified surfaces. RSC Adv. 2012;2:6784–6791. doi: 10.1039/c2ra21017g
  • Park SW, Choi BS, Lee JW. Chemical absorption of carbon dioxide with triethanolamine in non-aqueous solutions. Korean J Chem Eng. 2006;23:138–143. doi: 10.1007/BF02705705
  • Fang F, Li ZS, Cai NS. Experiment and modeling of CO2 capture from flue gases at high temperature in a fluidized bed reactor with Ca-based sorbents. Energy Fuels. 2009;23:207–216. doi: 10.1021/ef800474n
  • Van Der Sluijs JP, Hendriks CA, Blok K. Feasibility of polymer membranes for carbon dioxide recovery from flue gases. Energy Convers Manag. 1992;33:429–436. doi: 10.1016/0196-8904(92)90040-4
  • Gaikwad AG. Transport of carbonate ions through supported liquid membrane by using Alamine 336 and trioctylphosphine oxide as carriers. Green Chem Lett Rev. 2011;4:159–169. doi: 10.1080/17518253.2010.528046
  • Xie X, Economides MJ. The impact of carbon geological sequestration. J Nat Gas Sci Eng. 2009;1:103–111. doi: 10.1016/j.jngse.2009.06.002
  • Huntzinger DN, Gierke JS, Sutter LL, et al. Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. J Hazard Mater. 2009;168:31–37. doi: 10.1016/j.jhazmat.2009.01.122
  • Baciocchi R, Costa G, Di Bartolomeo E, et al. Carbonation of stainless steel slag as a process for CO2 storage and slag valorization. Waste Biomass Valorization. 2010;1:467–477. doi: 10.1007/s12649-010-9047-1
  • Jo HY, Jin HK, Lee YJ, et al. Evaluation of factors affecting mineral carbonation of CO2 using coal fly ash in aqueous solutions under ambient conditions. Chem Eng J. 2012;183:77–87. doi: 10.1016/j.cej.2011.12.023
  • Pan SY. CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res. 2012;12:770–791.
  • Nyambura MG, Mugera GW, Felicia PL, et al. Carbonation of brine impacted fractionated coal fly ash: implications for CO2 sequestration. J Environ Manage. 2011;92:655–664. doi: 10.1016/j.jenvman.2010.10.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.