198
Views
10
CrossRef citations to date
0
Altmetric
Articles

Evaluation of the mercaptobenzothiazole degradation by combined adsorption process and Fenton reaction using iron mining residue

, , &
Pages 2032-2039 | Received 16 Mar 2016, Accepted 28 Sep 2016, Published online: 24 Oct 2016

References

  • Dewever H, Vereecken K, Stolz A, et al. Initial transformations in the biodegradation of benzothiazoles by Rhodococcus isolates. Appl Environ Microbiol. 1998;64:3270–3274.
  • Valdes H, Sanches-Polo M, Zaror CA. Effect of ozonization on the activated carbon surface chemical properties an on 2-mercaptobenzthiazol adsorption. Lat Am Appl Res. 2003;33:219–223.
  • Bess P, Combourieu B, Boyse G, et al. From benzothiazole to 2-hydroxybenzothiazole. Appl Environ Microbiol. 2001;67:1412–1417.
  • Reemtsma T, Fiehn O, Kalnowski G, et al. Microbial transformations and biological effects of fungicide-derived benzothiazotes determined in industrial waste water. Environ Sci Technol. 1995;29:478–485.
  • Eckenfelder WW. Industrial water pollution control. 3th ed. New York (NY): McGraw Hill; 2000.
  • Elsellami L, Chartron V, Vocanson F, et al. Coupling process between solid-liquid extraction of amino acids by calixarenes and photocatalytic degradation. J Hazard Mater. 2009;166:1195–1200.
  • Ntampegliotis K, Riga A, Karayannis V, et al. Decolorization kinetics of Procion H-exl dyes from textile dyeing using Fenton-like reactions. J Hazard Mater. 2006;136:75–84.
  • Huang HH, Lu MC, Chen JN. Catalytic decomposition of hydrogen peroxide and 2- chlorophenol with iron oxides. Water Res. 2001;35:2291–2299.
  • Kwan WP, Voelker BM. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ Sci Technol. 2003;37:1150–1158.
  • Baldrian P, Merhautová V, Gabriel J, et al. Decolorization of synthetic dyes by hydrogen peroxide with heterogeneous catalysis by mixed iron oxides. Appl Catal B: Environ. 2006;66:258–264.
  • Wu JJ, Muruganandham M, Yang JS, et al. Oxidation of DMSO on goethite catalyst in the presence of H2O2 at neutral pH. Catal Commun. 2006;7:901–906.
  • Matta R, Hanna K, Chiron S. Fenton-like oxidation of 2, 4, 6-trinitrotoluene using different iron minerals. Sci Total Environ. 2007;385:242–251.
  • Barreiro JC, Capelato MD, Martin-neto L, et al. Oxidative decomposition of atrazine by a Fenton-like reaction in a H2O2/ferrihydrite system. Water Res. 2007;41:55–62.
  • Yeh CKJ, Hsu CY, Chiu CH, et al. Reaction efficiencies and rate constants for the goethite-catalyzed Fenton-like reaction of NAPL-form aromatic hydrocarbons and chloroethylenes. J Hazard Mater. 2008;151:562–569.
  • Oliveira LCA, Fabris JD, Pereira MC. [Iron oxides and their applications in catalytic processes: a review]. Quim Nova. 2013;36(1):123–130.
  • Mechakra H, Sehili T, Kribeche MA, et al. Use of natural iron oxide as heterogeneous catalyst in photo-Fenton-like oxidation of chlorophenylurea herbicide in aqueous solution: reaction monitoring and degradation pathways. J Photochem Photobiol A. 2016;317:140–150.
  • Teixeira CPAB, Jardim WF. [Advanced oxidation processes: theoretical concepts]. Themed notebooks. Vol. 3. São Paulo: Institute of Chemistry, State University of Campinas; 2004. p. 18–19. Portuguese.
  • Boscov MEG. [Environmental Geotechnics]. Texts workshop. São Paulo (Brazil): Oficina de texto; 2008. p. 185–207. Portuguese.
  • Calmon JL. Resíduos Industriais e Agrícolas. In: Materiais da Construção Civil e Princípios de Ciência e Engenharia de Materiais. Vol. 1. São Paulo: Instituto Brasileiro do Concreto (IBRACON); 2007. p. 1591–1627.
  • Nidheesh PV, Gandhimati R, Ramesh ST. Degradation of dyes from aqueous solution by Fenton processes: a review. Environ Sci Pollut Res. 2013;20:2099–2132.
  • Ratanatamskul C, Chintitanun S, Lu MC. Catalytic degradation of anilina by iron oxide in the presence of hydrogen peroxide. 4th International conferences on Oxidation Technologies for Water and Wastewater Treatment; Goslar, Germany. CUTEC; 2006.
  • Puig A, Ormad P, Roche P, et al. Wastewater from the manufacture of rubber vulcanization accelerators: characterization, downstream monitoring and chemical treatment. J Chromatogr A. 1996;733:511–522.
  • Fiehn O, Wegener G, Jochimsen J, et al. Analysis of the ozonation of 2-mercaptobenzothiazole in water and tannery wastewater using sum parameters, liquid and gas chromatography and capillary electrophoresis. Water Res. 1998;32:1075–1084.
  • Habibi MH, Tangestaninejad S, Yadollahi B. Photocatalytic mineralisation of mercaptans as environmental pollutants in aquatic system using TiO2 suspension. Appl Catal B. 2001;33:57–63.
  • Malouki MA, Richard C, Zertal A. Photolysis of 2-mercaptobenzothiazole in aqueous medium. Laboratory and field experiments. J Photochem Photobiol A. 2004;167:121–126.
  • Li FB, Li XZ, Ng KH, et al. Enhanced photocatalytic activity of Ce3+–TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control. Appl Catal A. 2005;285:181–189.
  • Sarasa J, Llabrés T, Ormad P, et al. Characterization and photo-Fenton treatment of used tires leachate. J Hazard Mater. 2006;136(3):874–81.
  • Wang XJ, Song Y, Mai JS. Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate. J Hazard Mater. 2008;160:344–388.
  • Al-Ansari MM, Steevensz A, Taylor KE, et al. Soybean peroxidase-catalyzed removal of an aromatic thiol, 2-mercaptobenzothiazole, from water. Water Environ Res. 2010;82:2285–2289.
  • Bao Q, Chen L, Tian J, et al. Degradation of 2-mercaptobenzothiazole in aqueous solution by gamma irradiation Radiation. Phy Chem. 2014;103:198–202.
  • Liu C, Li F, Li X, et al. The effect of iron oxides and oxalate on the photodegradation of 2-mercaptobenzothiazole. J Mol Catal A. 2006;252:40–48.
  • Sumegová J, Derco J, Melicher M. Degradation of benzothiazole by ozonation and adsorptive ozonation. Chem Biochem Eng Q. 2015;29(1):63–66.
  • Aguiar A, Ferraz A, Contreras D, et al. [Mechanism and applications of Fenton reaction assisted by reducing iron phenolic compounds]. Química Nova. 2007;30(3):623–628. Portuguese.
  • Oliveira MC, Nogueira RFP, Neto JAG, et al. [System for injection spectrophotometric flow to monitor the residual hydrogen peroxide in the photodegradation process for photo-Fenton reaction]. Química Nova. 2001;24(2):188–190. Portuguese.
  • Iwasaki I, Cooke SRB, Colombo AF. Flotation characteristics of goethite. Report of Investigations 5593. Washington (DC): United States of Interior, Bureau of Mines; 1960.
  • Lima RMF. Starch and amine adsorption on the surface of hematite and quartz and its influence on flotation [dissertation]. Belo Horizonte (Brazil): Federal University of Minas Gerais; 1997.
  • Lima RMF, Brandão PRG. Flotabidade da hematita e do quartzo com alquileteramina na ausência e presença de amido. Proceedings of the Brazilian Symposium of Iron; Ouro Preto, Minas Gerais; 1999. p. 172–185.
  • Araújo FVF. Estudo do processo Fenton Heterogêneo utilizando hematita (Fe2O3) como catalisador na descoloração de soluções de corante reativo [tese de doutorado]. Rio de Janeiro (Brazil): Escola de Química/UFRJ; 2008.
  • Silva GR. Characterization, fundamental studies and flotation goethitic iron ore [dissertation]. Belo Horizonte (Brazil): Federal University of Minas Gerais; 2014.
  • Ensing B, Buda F, Baerends EJ. Fenton-like chemistry in water: oxidation catalysis by Fe(III) and H2O2. J Phy Chem A. 2003;107(30):5722–5731.
  • P´erez M, Torrades F, Domènech X, et al. Fenton and photo-Fenton oxidation of textile effluents. Water Res. 2002;36(11):2703–2710.
  • Ramirez JH, Maldonado-Hodar FJ, Perez Cadenas AF, et al. Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon Fe catalysts. Appl Catal B. 2007;75:312–323.
  • Araújo FVF, Yokoyama L, Teixeira LAC, et al. Heterogeneous Fenton process using the mineral hematite for the discolouration of a reactive dye solution. Brazil J Chem Eng. 2011;28(4):605–616.
  • Lu MC. Oxidation of chlorophenols with hydrogen peroxide in the presence of goethite. Chemosphere, 2000;40:125–130.
  • Parsons S. Advanced oxidation processes for water and wastewater treatment. London: IWA; 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.