944
Views
39
CrossRef citations to date
0
Altmetric
Articles

Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles

, ORCID Icon, , , ORCID Icon, & show all
Pages 2058-2069 | Received 04 Apr 2016, Accepted 02 Oct 2016, Published online: 21 Oct 2016

References

  • Shi CW, Wei J, Jin Y, et al. Removal of viruses and bacteriophages from drinking water using zero-valent iron. Sep Purif Technol. 2012;84:72–78. doi: 10.1016/j.seppur.2011.06.036
  • Matsushita T, Suzuki H, Shirasaki N, et al. Adsorptive virus removal with super-powdered activated carbon. Sep Purif Technol. 2013;107:79–84. doi: 10.1016/j.seppur.2013.01.017
  • Liga MV, Bryant EL, Colvin VL, et al. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res. 2011;45:535–544. doi: 10.1016/j.watres.2010.09.012
  • Simmons FJ, Kuo DHW, Xagoraraki I. Removal of human enteric viruses by a full-scale membrane bioreactor during municipal wastewater processing. Water Res. 2011;45:2739–2750. doi: 10.1016/j.watres.2011.02.001
  • Kuo DHW, Simmons FJ, Blair S, et al. Assessment of human adenovirus removal in a full-scale membrane bioreactor treating municipal wastewater. Water Res. 2010;44:1520–1530. doi: 10.1016/j.watres.2009.10.039
  • Kitajima M, Haramoto E, Phanuwan C, et al. Detection of genogroup IV norovirus in wastewater and river water in Japan. Lett Appl Microbiol. 2009;49:655–658. doi: 10.1111/j.1472-765X.2009.02718.x
  • da Silva AK, Le Saux J-C, Parnaudeau S, et al. Evaluation of removal of noroviruses during wastewater treatment, using real-time reverse transcription-PCR: different behaviors of genogroups I and II. Appl Environ Microbiol. 2007;73:7891–7897. doi: 10.1128/AEM.01428-07
  • Haramoto E, Katayama H, Oguma K, et al. Quantitative analysis of human enteric adenoviruses in aquatic environments. J Appl Microbiol. 2007;103:2153–2159. doi: 10.1111/j.1365-2672.2007.03453.x
  • Kageyama T, Kojima S, Shinohara M, et al. Broadly reactive and highly sensitive assay for norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J Clin Microbiol. 2003;41:1548–1557. doi: 10.1128/JCM.41.4.1548-1557.2003
  • Ueki Y, Sano D, Watanabe T, et al. Norovirus pathway in water environment estimated by genetic analysis of strains from patients of gastroenteritis, sewage, treated wastewater, river water and oysters. Water Res. 2005;39:4271–4280. doi: 10.1016/j.watres.2005.06.035
  • Miagostovich MP, Ferreira FF, Guimarães FR, et al. Molecular detection and characterization of gastroenteritis viruses occurring naturally in the stream waters of Manaus, central Amazonia, Brazil. Appl Environ Microbiol. 2008;74:375–382. doi: 10.1128/AEM.00944-07
  • Lodder WJ, Van Den Berg HHJL, Rutjes SA, et al. Presence of enteric viruses in source waters for drinking water production in The Netherlands. Appl Environ Microbiol. 2010;76:5965–5971. doi: 10.1128/AEM.00245-10
  • Vivier JC, Ehlers MM, Grabow WOK. Detection of enteroviruses in treated drinking water. Water Res. 2004;38:2699–2705. doi: 10.1016/S0043-1354(01)00433-X
  • Papaventsis D, Siafakas N, Markoulatos P, et al. Membrane adsorption with direct cell culture combined with reverse transcription-PCR as a fast method for identifying enteroviruses from sewage. Appl Environ Microbiol. 2005;71:72–79. doi: 10.1128/AEM.71.1.72-79.2005
  • Wegmann M, Michen B, Graule T. Nanostructured surface modification of microporous ceramics for efficient virus filtration. J Eur Ceram Soc. 2008;28:1603–1612. doi: 10.1016/j.jeurceramsoc.2007.11.002
  • Blatchley ER, Gong W-L, Alleman JE, et al. Effects of wastewater disinfection on waterborne bacteria and viruses. Water Environ Res. 2007;79:81–92. doi: 10.2175/106143006X102024
  • Mamane H, Shemer H, Linden KG. Inactivation of E-coli, B-subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation. J Hazard Mater. 2007;146:479–486. doi: 10.1016/j.jhazmat.2007.04.050
  • Aronino R, Dlugy C, Arkhangelsky E, et al. Removal of viruses from surface water and secondary effluents by sand filtration. Water Res. 2009;43:87–96. doi: 10.1016/j.watres.2008.10.036
  • Jurzik L, Hamza IA, Puchert W, et al. Chemical and microbiological parameters as possible indicators for human enteric viruses in surface water. Int J Hyg Environ Health. 2010;213:210–216. doi: 10.1016/j.ijheh.2010.05.005
  • Grabow W. Bacteriophages: update on application as models for viruses in water. Water SA. 2001;27:251–268.
  • Bales RC, Gerba CP, Grondin GH, et al. Bacteriophage transport in sandy soil and fractured tuff. Appl Environ Microbiol. 1989;55:2061–2067.
  • Nasser AM, Glozman R, Nitzan Y. Contribution of microbial activity to virus reduction in saturated soil. Water Res. 2002;36:2589–2595. doi: 10.1016/S0043-1354(01)00461-4
  • Gutierrez L, Li X, Wang J, et al. Adsorption of rotavirus and bacteriophage MS2 using glass fiber coated with hematite nanoparticles. Water Res. 2009;43:5198–5208. doi: 10.1016/j.watres.2009.08.031
  • Timchak E, Gitis V. A combined degradation of dyes and inactivation of viruses by UV and UV/H2O2. Chem Eng J. 2012;192:164–170. doi: 10.1016/j.cej.2012.03.054
  • Gerba CP. Applied and theoretical aspects of virus adsorption to surfaces. Adv Appl Microbiol. 1984;30:133–168. doi: 10.1016/S0065-2164(08)70054-6
  • Templeton MR, Andrews RC, Hofmann R. Removal of particle-associated bacteriophages by dual-media filtration at different filter cycle stages and impacts on subsequent UV disinfection. Water Res. 2007;41:2393–2406. doi: 10.1016/j.watres.2007.02.047
  • Zheng J, Zhao Q, Ye Z. Preparation and characterization of activated carbon fiber (ACF) from cotton woven waste. Appl Surf Sci. 2014;299:86–91. doi: 10.1016/j.apsusc.2014.01.190
  • Depci T. Comparison of activated carbon and iron impregnated activated carbon derived from Gölbaşı lignite to remove cyanide from water. Chem Eng J. 2012;181–182:467–478. doi: 10.1016/j.cej.2011.12.003
  • Demirbas A. Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J Hazard Mater. 2009;167:1–9. doi: 10.1016/j.jhazmat.2008.12.114
  • Tamai H, Yoshida T, Sasaki M, et al. Dye adsorption on mesoporous activated carbon fiber obtained from pitch containing yttrium complex. Carbon. 1999;37:983–989. doi: 10.1016/S0008-6223(98)00294-2
  • ChangMing D, DongWei H, HongXia L, et al. Adsorption of acid orange II from aqueous solution by plasma modified activated carbon fibers. Plasma Chem Plasma Process. 2013;33:65–82. doi: 10.1007/s11090-012-9412-x
  • Tang D, Zheng Z, Lin K, et al. Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber. J Hazard Mater. 2007;143:49–56. doi: 10.1016/j.jhazmat.2006.08.066
  • Zhou D, Hai R, Wang W, et al. Activated carbon fiber filler in aerated bioreactor for industrial wastewater treatment. Water Sci Technol. 2012;65:1753–1758. doi: 10.2166/wst.2012.077
  • Hijnen WAM, Suylen GMH, Bahlman JA, et al. GAC adsorption filters as barriers for viruses, bacteria and protozoan (oo)cysts in water treatment. Water Res. 2010;44:1224–1234. doi: 10.1016/j.watres.2009.10.011
  • Pelczar MJ, Reid RD, Chan ECS. Microbiologia. São Paulo: McGraw-Hill; 1981.
  • Khandelwal N, Kaur G, Chaubey KK, et al. Silver nanoparticles impair Peste des petits ruminants virus replication. Virus Res. 2014.
  • Lau B, Harrington G, Anderson M, et al. Removal of nano and microparticles by granular filter media coated with nanoporous aluminium oxide. Water Sci Technol. 2004;50:223–228.
  • Jin S, Fallgren PH, Morris JM, et al. Removal of bacteria and viruses from waters using layered double hydroxide nanocomposites. Sci Technol Adv Mater. 2007;8:67–70. doi: 10.1016/j.stam.2006.09.003
  • Wegmann M, Michen B, Luxbacher T, et al. Modification of ceramic microfilters with colloidal zirconia to promote the adsorption of viruses from water. Water Res. 2008;42:1726–1734. doi: 10.1016/j.watres.2007.10.030
  • Mostafavi ST, Mehrnia MR, Rashidi AM. Preparation of nanofilter from carbon nanotubes for application in virus removal from water. Desalination. 2009;238:271–280. doi: 10.1016/j.desal.2008.02.018
  • Bradley I, Straub A, Maraccini P, et al. Iron oxide amended biosand filters for virus removal. Water Res. 2011;45:4501–4510. doi: 10.1016/j.watres.2011.05.045
  • Ahammed MM, Davra K. Performance evaluation of biosand filter modified with iron oxide-coated sand for household treatment of drinking water. Desalination. 2011;276:287–293. doi: 10.1016/j.desal.2011.03.065
  • Dankovich TA, Smith JA. Incorporation of copper nanoparticles into paper for point-of-use water purification. Water Res. 2014;63:245–251. doi: 10.1016/j.watres.2014.06.022
  • Yeddou AR, Chergui S, Chergui A, et al. Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide in presence of copper-impregnated activated carbon. Miner Eng. 2011;24:788–793. doi: 10.1016/j.mineng.2011.02.012
  • Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, et al. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol. 2010;8:1–8. doi: 10.1186/1477-3155-8-1
  • Feng QL, Wu J, Chen GQ, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52:662–668. doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  • Elechiguerra JL, Burt JL, Morones JR, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol. 2005;3:1–10. doi: 10.1186/1477-3155-3-6
  • Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346. doi: 10.1088/0957-4484/16/10/059
  • Imai K, Ogawa H, Bui VN, et al. Inactivation of high and low pathogenic avian influenza virus H5 subtypes by copper ions incorporated in zeolite-textile materials. Antiviral Res. 2012;93:225–233. doi: 10.1016/j.antiviral.2011.11.017
  • Foster HA, Sheel DW, Sheel P, et al. Antimicrobial activity of titania/silver and titania/copper films prepared by CVD. J Photochem Photobiol A: Chem. 2010;216:283–289. doi: 10.1016/j.jphotochem.2010.09.017
  • Vainio U, Pirkkalainen K, Kisko K, et al. Copper and copper oxide nanoparticles in a cellulose support studied using anomalous small-angle X-ray scattering. Eur Phys J D-Atom Mol, Opt Plasma Phys. 2007;42:93–101.
  • Ben-Sasson M, Zodrow KR, Genggeng Q, et al. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ Sci Technol. 2013;48:384–393. doi: 10.1021/es404232s
  • Clasen TF. Household water treatment and the millennium development goals: keeping the focus on health. Environ Sci Technol. 2010;44:7357–7360. doi: 10.1021/es1018674
  • Gerba CP, Naranjo JE, Jones EL. Virus removal from water by a portable water treatment device. Wilderness Environ Med. 2008;19:45–49. doi: 10.1580/07-WEME-BR-109.1
  • Kumar VS, Nagaraja BM, Shashikala V, et al. Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water. J Mol Catal A: Chem. 2004;223:313–319. doi: 10.1016/j.molcata.2003.09.047
  • [56] Association APH. Standard methods for the examination of water and wastewater. 20th ed. Washington (DC): American Public Health Association; 1998.
  • Russel M, Lowman HB, Clackson T. Introduction to phage biology and phage display. In: Clackson T, Lowman HB, editors. Practical approach phage display. Oxford: Oxford University Press; 2004. p. 1–26.
  • Adams MH. Bacteriophages. New York (NY): Interscience; 1959. p. 450–454.
  • Brady-Estévez AS, Nguyen TH, Gutierrez L, et al. Impact of solution chemistry on viral removal by a single-walled carbon nanotube filter. Water Res. 2010;44:3773–3780. doi: 10.1016/j.watres.2010.04.023
  • Gerba CP, Naranjo JE. Microbiological water purification without the use of chemical disinfection. Wilderness Environ Med. 2000;11:12–16. doi: 10.1580/1080-6032(2000)011[0012:MWPWTU]2.3.CO;2
  • Huang X, Dong W, Wang G, et al. Synthesis of confined Ag nanowires within mesoporous silica via double solvent technique and their catalytic properties. J Colloid Interface Sci. 2011;359:40–46. doi: 10.1016/j.jcis.2011.03.049
  • Siriwardane RV, Poston Jr JA, Fisher EP, et al. Decomposition of the sulfates of copper, iron (II), iron (III), nickel, and zinc: XPS, SEM, DRIFTS, XRD, and TGA study. Appl Surf Sci. 1999;152:219–236. doi: 10.1016/S0169-4332(99)00319-0
  • Goscianska J, Nowicki P, Nowak I, et al. Thermal analysis of activated carbons modified with silver metavanadate. Thermochimica Acta. 2012;541:42–48. doi: 10.1016/j.tca.2012.04.026
  • Srinivasan NR, Shankar PA, Bandyopadhyaya R. Plasma treated activated carbon impregnated with silver nanoparticles for improved antibacterial effect in water disinfection. Carbon. 2013;57:1–10. doi: 10.1016/j.carbon.2013.01.008
  • Lam FLY, Hu X. A new system design for the preparation of copper/activated carbon catalyst by metal-organic chemical vapor deposition method. Chem Eng Sci. 2003;58:687–695. doi: 10.1016/S0009-2509(02)00596-1
  • Parashar V, Parashar R, Sharma B, et al. Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Dig J Nanomat Biostruct. 2009;4:45–50.
  • Azam A, Ahmed AS, Oves M, et al. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains. Int J Nanomed. 2012;7:3527–335. doi: 10.2147/IJN.S29020
  • Sing K, Everett D, Haul R, et al. Physical and biophysical chemistry division commission on colloid and surface chemistry including catalysis. Pure Appl Chem. 1985;57:603–619. doi: 10.1351/pac198557040603
  • Freitas AF, Mendes MF, Coelho GLV. Thermodynamic study of fatty acids adsorption on different adsorbents. J Chem Thermodyn. 2007;39:1027–1037. doi: 10.1016/j.jct.2006.12.016
  • Rivera-Utrilla J, Prados-Joya G, Sánchez-Polo M, et al. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. J Hazard Mater. 2009;170:298–305. doi: 10.1016/j.jhazmat.2009.04.096
  • Venkata Ramana DK, Yu JS, Seshaiah K. Silver nanoparticles deposited multiwalled carbon nanotubes for removal of Cu(II) and Cd(II) from water: surface, kinetic, equilibrium, and thermal adsorption properties. Chem Eng J. 2013;223:806–815. doi: 10.1016/j.cej.2013.03.001
  • Gregory J. Approximate expressions for retarded van der waals interaction. J Colloid Interface Sci. 1981;83:138–145. doi: 10.1016/0021-9797(81)90018-7
  • Hogg R, Healy TW, Fuerstenau DW. Mutual coagulation of colloidal dispersions. Trans Faraday Soc. 1966;62:1638–1651. doi: 10.1039/tf9666201638
  • Guy MD, McIver JD, Lewis MJ. The removal of virus by a pilot treatment plant. Water Res. 1977;11:421–428. doi: 10.1016/0043-1354(77)90083-5
  • Scott TM, Sabo RC, Lukasik J, et al. Performance and cost-effectiveness of ferric and aluminum hydrous metal oxide coating on filter media to enhance virus removal. KONA Powder Part J. 2002;20:159–167. doi: 10.14356/kona.2002018
  • Persson F, Långmark J, Heinicke G, et al. Characterisation of the behaviour of particles in biofilters for pre-treatment of drinking water. Water Res. 2005;39:3791–3800. doi: 10.1016/j.watres.2005.07.007
  • Cookson Jr JT. Mechanism of virus adsorption on activated carbon. J Am Water Works Assoc. 1969;61:52–56.
  • Stewart S, Fredericks PM. Surface-enhanced Raman spectroscopy of peptides and proteins adsorbed on an electrochemically prepared silver surface. Spectrochim Acta Mol Biomol Spectrosc. 1999;55:1615–1640. doi: 10.1016/S1386-1425(98)00293-5
  • Thurman RB, Gerba CP, Bitton G. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit Rev Environ Sci Technol. 1989;18:295–315.
  • Auffan M, Rose J, Wiesner MR, et al. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut. 2009;157:1127–1133. doi: 10.1016/j.envpol.2008.10.002
  • Choi O, Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol. 2008;42:4583–4588. doi: 10.1021/es703238h
  • Zodrow K, Brunet L, Mahendra S, et al. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res. 2009;43:715–723. doi: 10.1016/j.watres.2008.11.014
  • You J, Zhang Y, Hu Z. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Coll Surf B: Biointerfaces. 2011;85:161–167. doi: 10.1016/j.colsurfb.2011.02.023
  • Lund E. The significance of oxidation in chemical inactivation of poliovirus. Archiv für die gesamte Virusforschung. 1963;12:648–660. doi: 10.1007/BF01246386
  • Shionoiri N, Sato T, Fujimori Y, et al. Investigation of the antiviral properties of copper iodide nanoparticles against feline calicivirus. J Biosci Bioeng. 2012;113:580–586. doi: 10.1016/j.jbiosc.2011.12.006
  • Yamamoto N, Hiatt C, Haller W. Mechanism of inactivation of bacteriophages by metals. Biochim Biophys Acta. 1964;91:257–261.
  • Murray JP, Laband SJ. Degradation of poliovirus by adsorption on inorganic surfaces. Appl Environ Microbiol. 1979;37:480–486.
  • Plastourgou M, Hoffmann MR. Transformation and fate of organic esters in layered-flow systems: the role of trace metal catalysis. Environ Sci Technol. 1984;18:756–764. doi: 10.1021/es00128a007
  • Hambidge A. Reviewing efficacy of alternative water treatment techniques. Health Estate. 2001;55:23–25.
  • Benn TM, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol. 2008;42:4133–4139. doi: 10.1021/es7032718

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.