821
Views
31
CrossRef citations to date
0
Altmetric
Articles

Effect of flue gas CO2 on the growth, carbohydrate and fatty acid composition of a green microalga Scenedesmus obliquus for biofuel production

, , , , &
Pages 2085-2092 | Received 22 Jul 2015, Accepted 05 May 2016, Published online: 31 Oct 2016

References

  • Chiu SY, Kao CY, Huang TT, et al. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour Technol. 2011;102:9135–9142. doi: 10.1016/j.biortech.2011.06.091
  • Kumar K, Banerjee D, Das D. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresour Technol. 2014;152:225–233. doi: 10.1016/j.biortech.2013.10.098
  • Praveenkumar R, Kim B, Choi E, et al. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas. Bioresour Technol. 2014;171:500–505. doi: 10.1016/j.biortech.2014.08.112
  • Ho SH, Chen CY, Chang JS. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol. 2010;101:8725–8730. doi: 10.1016/j.biortech.2010.06.112
  • Ji M-K, Abou-Shanab RAI, Kim S-H, et al. Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol Eng. 2013;58:142–148. doi: 10.1016/j.ecoleng.2013.06.020
  • Ota M, Kato YW, Watanabe H, et al. Effect of inorganic carbon on photoautotrophic growth of microalga Chlorococcum littorale. Biotechnol Progr. 2009;25:492–498. doi: 10.1002/btpr.123
  • Yoo C, Choi GG, Kim SC, et al. Ettlia sp. YC001 showing high growth rate and lipid content under high CO2. Bioresour Technol. 2013;127:482–488. doi: 10.1016/j.biortech.2012.09.046
  • Nakanishi A, Aikawa S, Ho SS, et al. Development of lipid productivities under different CO2 condition of marine microalgae Chlamydomonas sp. JSC4. Bioresour Technol. 2014;152:247–252. doi: 10.1016/j.biortech.2013.11.009
  • Luque R, Lovett JC, Datta B, et al. Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview. Energy Environ Sci. 2010;3:1706–1721. doi: 10.1039/c0ee00085j
  • Lizzul AM, Hellier P, Purton S, et al. Combined remediation and lipid production using Chlorella sorokiniana grown on wastewater and exhaust gases. Bioresour Technol. 2014;151:12–18. doi: 10.1016/j.biortech.2013.10.040
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306. doi: 10.1016/j.biotechadv.2007.02.001
  • Rittmann BE. Opportunities for renewable bioenergy using micro-organisms. Biotechnol Bioeng. 2008;100:203–212. doi: 10.1002/bit.21875
  • Jiang Y, Zhang W, Wang J, et al. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol. 2013;128:359–364. doi: 10.1016/j.biortech.2012.10.119
  • Yun HS, Lee H, Park YT, et al. Isolation of novel microalgae from acid mine drainage and its potential application for biodiesel production. Appl Biochem Biotechnol. 2014;173:2054–2064. doi: 10.1007/s12010-014-1002-3
  • Ňancucheo I, Johnson DB. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles. Front Microbiol. 2012;3:325. doi: 10.3389/fmicb.2012.00325
  • Li X, Hu HY, Zhang YP. Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresource Technol. 2011;102:3098–3102. doi: 10.1016/j.biortech.2010.10.055
  • Ho SS, Chen CY, Chang JS. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technol. 2012;113:244–252. doi: 10.1016/j.biortech.2011.11.133
  • McGinn PJ, Dickinson KE, Park KC, et al. Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Res. 2012;1:155–165. doi: 10.1016/j.algal.2012.05.001
  • Ji M-K, Abou-Shanab RAI, Hwang JH, et al. Removal of nitrogen and phosphorus from piggery wastewater effluent using the green microalga Scenedesmus obliquus. J Environ Eng. 2013;139:1198–1205. doi: 10.1061/(ASCE)EE.1943-7870.0000726
  • Ji M-K, Yun HS, Park S, et al. Effect of food wastewater on biomass production by a green microalga Scenedesmus obliquus for bioenergy generation. Bioresource Technol. 2015;179:624–628. doi: 10.1016/j.biortech.2014.12.053
  • Gouveia L, Oliveira AC, Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol. 2009;36:269–274. doi: 10.1007/s10295-008-0495-6
  • Bischoff HW, Bold HC. Phycological Studies IV. Some soil algae from enchanted rock and related algal species. Austin (TX): University of Texas Publication; 1963. p. 1–95. 6318
  • John DM, Whitton BA, Brook AJ. The freshwater algal flora of the British Isles an identification guide to freshwater and terrestrial algae. Cambridge (UK): Cambridge University Press; 2003. p. 39–43.
  • Sonnenberg R, Nolte AW, Tautz D. An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Front Zool. 2007;4:6–12. doi: 10.1186/1742-9994-4-6
  • Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389
  • Nicholas KB, Nicholas HB. Genedoc: a tool for editing and annotating multiple sequence alignments. Multiple sequence alignment editor and shading utility, 2.6.001; 1997 [cited 2007 Mar 2]. Available from: http://www.PSC.edu/biomed/genedoc
  • American Public Health Association (APHA). Methods for biomass production. In: Standard Methods for the examination of water and wastewater. Baltimore (MD): American Public Health Association; 1998.
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Phys. 1959;37:911–917. doi: 10.1139/o59-099
  • Lepage G, Roy CC. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res. 1984;25:1391–1396.
  • Rao P, Pattabiraman TN. Reevaluation of the phenol-sulfuric acid reaction for the estimation of hexoses and pentoses. Anal Biochem. 1989;181:18–22. doi: 10.1016/0003-2697(89)90387-4
  • Jiang L, Luo S, Fan X, et al. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energ. 2011;88:3336–3341. doi: 10.1016/j.apenergy.2011.03.043
  • Tang D, Han W, Li P, et al. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol. 2011;102:3071–3076. doi: 10.1016/j.biortech.2010.10.047
  • Li FF, Yang ZH, Zeng R, et al. Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind Eng Chem Res. 2011;50:6496–6502. doi: 10.1021/ie200040q
  • Huertas IE, Lubian LM. Comparative study of dissolved inorganic carbon utilization and photosynthetic responses in Nannochloris (Chlorophyceae) and Nannochloropsis (Eustigmatophyceae) species. Can J Botany. 1998;76:1104–1108.
  • Cho S, Luong TT, Lee D, et al. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresour Technol. 2011;102:8639–8645. doi: 10.1016/j.biortech.2011.03.037
  • Liang Y, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett. 2009;31:1043–1049. doi: 10.1007/s10529-009-9975-7
  • Wang XW, Liang JR, Luo CS, et al. Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in the response to different CO2 levels. Bioresour Technol. 2014;161:124–130. doi: 10.1016/j.biortech.2014.03.012
  • Guruvaiah M, Lee K. Utilization of flue gas from coal burning power plant for microalgae cultivation for biofuel production. Inter J Innovative Technol Exploring Eng. 2014;3:7–10.
  • Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621–639. doi: 10.1111/j.1365-313X.2008.03492.x
  • Chisti Y. Biodiesel from microalgae beats bioethanol. Trend Biotechnol. 2008;26:126–131. doi: 10.1016/j.tibtech.2007.12.002
  • Nakanishi A, Aikawa S, Ho SS, et al. Development of lipid productivities under different CO2 condition of marine microalgae Chlamydomonas sp. JSC4. Bioresour Technol. 2014;152:247–252. doi: 10.1016/j.biortech.2013.11.009
  • Liu J, Huang J, Sun Z, et al. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol. 2011;102:106–110. doi: 10.1016/j.biortech.2010.06.017
  • Cheirsilp B, Torpee S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol. 2012;110:510–516. doi: 10.1016/j.biortech.2012.01.125
  • Kao CY, Chen TY, Chang YB, et al. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour Technol. 2014;166:485–493. doi: 10.1016/j.biortech.2014.05.094
  • Rangel-Yagui CD, Danesi EDG, de Carvalho JCM, et al. Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresour Technol. 2004;92:133–141. doi: 10.1016/j.biortech.2003.09.002
  • Ji Y, Hu W, Li X, et al. Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater. Bioresour Technol. 2014;152:471–476. doi: 10.1016/j.biortech.2013.11.047
  • Carrieri D, Momot D, Brasg IA, et al. Boosting autofermentation rates and product yields with sodium stress cycling: application to production of renewable fuels by cyanobacteria. Appl Environ Microbiol. 2010;76:6455–6462. doi: 10.1128/AEM.00975-10
  • Chen CY, Zhao XQ, Yen HW, et al. Microalgae-based carbohydrates for biofuel production. Biochem Eng J. 2013;78:1–10. doi: 10.1016/j.bej.2013.03.006
  • Xia JR, Gao KS. Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae. J Integr Plant Biol. 2005;47:668–675. doi: 10.1111/j.1744-7909.2005.00114.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.