141
Views
1
CrossRef citations to date
0
Altmetric
Articles

Investigation of the compatibility of xanthan gum (XG) and calcium polysulfide and the rheological properties of XG solutions

, , &
Pages 607-615 | Received 26 Jun 2015, Accepted 16 Mar 2017, Published online: 05 Apr 2017

References

  • Zhong L, Oostrom M, Wietsma TW, et al. Enhanced remedial amendment delivery through fluid viscosity modifications: experiments and numerical simulations. J Contam Hydrol. 2008;101:29–41. doi: 10.1016/j.jconhyd.2008.07.007
  • Jackson RE, Dwarakanath V, Meinardus HW, et al. Mobility control: how injected surfactants and biostimulants may be forced into low-permeability units. Remediat J. 2003;13:59–66. doi: 10.1002/rem.10074
  • Hønning J, Broholm MM, Bjerg PL. Role of diffusion in chemical oxidation of PCE in a dual permeability system. Environ Sci Technol. 2007;41:8426–8432. doi: 10.1021/es0708417
  • McGuire TM, McDade JM, Newell CJ. Performance of DNAPL source depletion technologies at 59 chlorinated solvent-impacted sites. Groundwater Monit Remediat. 2006;26:73–84. doi: 10.1111/j.1745-6592.2006.00054.x
  • Krembs FJ, Siegrist RL, Crimi ML, et al. ISCO for groundwater remediation: analysis of field applications and performance. Groundwater Monit Remediat. 2010;30:42–53. doi: 10.1111/j.1745-6592.2010.01312.x
  • Chokejaroenrat C, Kananizadeh N, Sakulthaew C, et al. Improving the sweeping efficiency of permanganate into low permeable zones to treat TCE: experimental results and model development. Environ Sci Technol. 2013;47:13031–13038. doi: 10.1021/es403150x
  • Silva JA, Smith MM, Munakata-Marr J, et al. The effect of system variables on in situ sweep-efficiency improvements via viscosity modification. J Contam Hydrol. 2012;136–137:117–130. doi: 10.1016/j.jconhyd.2012.05.006
  • Zhong L, Szecsody J, Oostrom M, et al. Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam. J Hazard Mater. 2011;191:249–257. doi: 10.1016/j.jhazmat.2011.04.074
  • Martel R, Hebert A, Lefebvre R, et al. Displacement and sweep efficiencies in a DNAPL recovery test using micellar and polymer solutions injected in a five-spot pattern. J Contam Hydrol. 2004;75:1–29. doi: 10.1016/j.jconhyd.2004.03.007
  • Robert T, Martel R, Conrad SH, et al. Visualization of TCE recovery mechanisms using surfactant-polymer solutions in a two-dimensional heterogeneous sand model. J Contam Hydrol. 2006;86:3–31. doi: 10.1016/j.jconhyd.2006.02.013
  • Chokejaroenrat C, Comfort S, Sakulthaew C, et al. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate. J Hazard Mater. 2014;268:177–184. doi: 10.1016/j.jhazmat.2014.01.007
  • Kananizadeh N, Chokejaroenrat C, Li Y, et al. Modeling improved ISCO treatment of low permeable zones via viscosity modification: assessment of system variables. J Contam Hydrol. 2015;173:25–37. doi: 10.1016/j.jconhyd.2014.11.009
  • Wever DAZ, Picchioni F, Broekhuis AA. Polymers for enhanced oil recovery: a paradigm for structure–property relationship in aqueous solution. Prog Polym Sci. 2011;36:1558–1628. doi: 10.1016/j.progpolymsci.2011.05.006
  • Smith MM, Silva JA, Munakata-Marr J, et al. Compatibility of polymers and chemical oxidants for enhanced groundwater remediation. Environ Sci Technol. 2008;42:9296–9301. doi: 10.1021/es800757g
  • Zhong L, Oostrom M, Truex MJ, et al. Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. J Hazard Mater. 2013;244–245:160–170. doi: 10.1016/j.jhazmat.2012.11.028
  • McCray JE, Munakata-Marr J, Silva JA, et al. Multi-scale experiments to evaluate mobility control methods for enhancing the sweep efficiency of injected subsurface remediation amendments. DTIC Document; 2010.
  • Oostrom M, Truex MJ, Vermeul VR, et al. Remedial amendment delivery near the water table using shear thinning fluids: experiments and numerical simulations. Environ Processes. 2014;1:331–351. doi: 10.1007/s40710-014-0031-9
  • Dimitroula H, Syranidou E, Manousaki E, et al. Mitigation measures for chromium-VI contaminated groundwater – the role of endophytic bacteria in rhizofiltration. J Hazard Mater. 2015;281:114–120. doi: 10.1016/j.jhazmat.2014.08.005
  • Hamdan SS, El-Naas MH. Characterization of the removal of chromium(VI) from groundwater by electrocoagulation. J Ind Eng Chem. 2014;20:2775–2781. doi: 10.1016/j.jiec.2013.11.006
  • Economou-Eliopoulos M, Frei R, C A. Application of chromium stable isotopes to the evaluation of Cr(VI) contamination in groundwater and rock leachates from Central Euboea and the Assopos Basin (Greece). Catena. 2014;122:216–228. doi: 10.1016/j.catena.2014.06.013
  • Chrysochoou M, Ting A. A kinetic study of Cr(VI) reduction by calcium polysulfide. Sci Total Environ. 2011;409:4072–4077. doi: 10.1016/j.scitotenv.2011.06.015
  • Chrysochoou M, Ferreira DR, Johnston CP. Calcium polysulfide treatment of Cr(VI)-contaminated soil. J Hazard Mater. 2010;179:650–657. doi: 10.1016/j.jhazmat.2010.03.052
  • Chrysochoou M, Johnston CP, Dahal G. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and Green-tea nanoscale zero-valent iron. J Hazard Mater. 2012;201–202:33–42. doi: 10.1016/j.jhazmat.2011.11.003
  • Wazne M, Jagupilla SC, Moon DH, et al. Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore processing residue (COPR). J Hazard Mater. 2007;143:620–628. doi: 10.1016/j.jhazmat.2007.01.012
  • Palaniraj A, Jayaraman V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng. 2011;106:1–12. doi: 10.1016/j.jfoodeng.2011.03.035
  • Pastor M, Costell E, Izquierdo L, et al. Effects of concentration, pH and salt content on flow characteristics of xanthan gum solutions. Food Hydrocoll. 1994;8:265–275. doi: 10.1016/S0268-005X(09)80339-1
  • Comba S, Sethi R. Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res. 2009;43:3717–3726. doi: 10.1016/j.watres.2009.05.046
  • Dintzis F, Babcock G, Tobin R. Studies on dilute solutions and dispersion of the polysaccharide from Xanthomonas campestris NRRL B-1459. Carbohydr Res. 1970;13:257–267. doi: 10.1016/S0008-6215(00)80832-0
  • Bezemer L, Ubbink JB, de Kooker JA, et al. On the conformational transitions of native xanthan. Macromolecules. 1993;26:6436–6446. doi: 10.1021/ma00076a021
  • Wyatt NB, Gunther CM, Liberatore MW. Increasing viscosity in entangled polyelectrolyte solutions by the addition of salt. Polymer. 2011;52:2437–2444. doi: 10.1016/j.polymer.2011.03.053
  • Wyatt NB, Liberatore MW. The effect of counterion size and valency on the increase in viscosity in polyelectrolyte solutions. Soft Matter. 2010;6:3346–3352. doi: 10.1039/c000423e
  • Milas M, Rinaudo M, Tinland B. The viscosity dependence on concentration, molecular weight and shear rate of xanthan solutions. Polym Bull. 1985;14:157–164. doi: 10.1007/BF00708475
  • Renaud M, Belgacem MN, Rinaudo M. Rheological behaviour of polysaccharide aqueous solutions. Polymer. 2005;46:12348–12358. doi: 10.1016/j.polymer.2005.10.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.