316
Views
0
CrossRef citations to date
0
Altmetric
Articles

Improvement of (transition metal-modified) activated carbon regeneration by H2O2-promoted catalytic wet air oxidation

, , , &
Pages 2761-2770 | Received 04 Apr 2017, Accepted 05 Aug 2017, Published online: 28 Aug 2017

References

  • Pollard SJT, Fowler GD, Sollars CJ, et al. Low-cost adsorbents for waste and wastewater treatment: a review. Sci Total Environ. 1992;116(1–2):31–52. doi: 10.1016/0048-9697(92)90363-W
  • Mishra VS, Mahajani VV, Joshi JB. Wet air oxidation. Ind Eng Chem Res. 1995;34:2–48. doi: 10.1021/ie00040a001
  • Ahmaruzzaman MD. Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv Colloid Interface. 2008;143(1-2):48–67. doi: 10.1016/j.cis.2008.07.002
  • Magne P, Walker PL. Phenol adsorption on activated carbons: application to regeneration of activated carbons polluted with phenol. Carbon NY. 1986;24:101–107. doi: 10.1016/0008-6223(86)90102-8
  • Sheintuch M, Matatov-Meytal YI. Comparison of catalytic processes with other regeneration methods of activated carbon. Catal Today. 1999;53:73–80. doi: 10.1016/S0920-5861(99)00104-2
  • Suarez-Ojeda ME, Stuber F, Fortuny A, et al. Catalytic wet air oxidation of substituted phenols using activated carbon catalysts. Appl Catal B. 2005;58:105–114. doi: 10.1016/j.apcatb.2004.11.017
  • Quesada-Penate I, Julcour-Lebigue C, Jauregui-Haza UJ, et al. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption-catalytic wet air oxidation on activated carbons. J Hazard Mater. 2012;221:131–138. doi: 10.1016/j.jhazmat.2012.04.021
  • Matatov-Meytal YI, Sheintuch M, Shter GE, et al. Optimal temperatures for catalytic regeneration of activated carbon. Carbon NY. 1997;35:1527–1531. doi: 10.1016/S0008-6223(97)00103-6
  • Valdés H, Sanchez-Polo M, Rivera-Utrilla J, et al. Effect of ozone treatment on surface properties of activated carbon. Langmuir. 2002;18:2111–2116. doi: 10.1021/la010920a
  • Alvarez PM, Beltran FJ, Gomez-Serrano V, et al. Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol. Water Res. 2004;38:2155–2165. doi: 10.1016/j.watres.2004.01.030
  • Alvarez PM, Garcia-Araya JF, Beltran FJ, et al. Ozonation of activated carbons: effect on adsorption of selected phenolic compounds from aqueous solutions. J Colloid Interf Sci. 2005;283:503–512. doi: 10.1016/j.jcis.2004.09.014
  • Horng RS, Tseng IC. Regeneration of granular activated carbon saturated with acetone and isopropyl alcohol via a recirculation process under H2O2/UV oxidation. J Hazard Mater. 2008;154:366–372. doi: 10.1016/j.jhazmat.2007.10.033
  • Huling SG, Jones PK, Ela WP, et al. Fenton-driven chemical regeneration of MTBE-spent GAC. Water Res. 2005;39:2145–2153. doi: 10.1016/j.watres.2005.03.027
  • Bach A, Zelmanov G, Semiat R. Cold catalytic recovery of loaded activated carbon using iron oxide-based nanoparticles. Water Res. 2008;42:163–168. doi: 10.1016/j.watres.2007.07.044
  • Chiu CA, Hristovski K, Huling S, et al. In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst. Water Res. 2013;47:1596–1603. doi: 10.1016/j.watres.2012.12.021
  • Toledo LC, Silva ACB, Augusti R, et al. Application of Fenton’s reagent to regenerate activated carbon saturated with organochloro compounds. Chemosphere. 2003;50:1049–1054. doi: 10.1016/S0045-6535(02)00633-1
  • Muranaka C, Julcour C, Willhelm AM, et al. Regeneration of activated carbon by (photo)-Fenton oxidation. Ind Eng Chem Res. 2010;49:989–995. doi: 10.1021/ie900675d
  • Polaert I, Wilhelm AM, Delmas H. Phenol wastewater treatment by a two- step adsorption–oxidation process on activated carbon. Chem Eng Sci. 2002;57:1585–1590. doi: 10.1016/S0009-2509(02)00034-9
  • Delmas H, Creanga Manole C, Julcour C, et al. AD–OX: A sequential oxidative process for water treatment-adsorption and batch CWAO regeneration of activated carbon. Chem Eng J. 2009;152:189–194. doi: 10.1016/j.cej.2009.04.040
  • Benhamed I, Barthe L, Kessas R, et al. Effect of transition metal impregnation on oxidative regeneration of activated carbon by catalytic wet air oxidation. Appl Catal B. 2016;187:228–237. doi: 10.1016/j.apcatb.2016.01.016
  • Arena F, Di Chio R, Gumina B, et al. Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorg Chim Acta. 2015;431:101–109. doi: 10.1016/j.ica.2014.12.017
  • Arena F, Giovenco R, Teresa T, et al. Activity and resistance to leaching of Cu-based catalysts. Appl Catal B. 2003;45:51–62. doi: 10.1016/S0926-3373(03)00163-2
  • Santiago M, Stüber F, Fortuny A, et al. Modified activated carbons for catalytic wet air oxidation of phenol. Carbon NY. 2005;43(10):2134–2145. doi: 10.1016/j.carbon.2005.03.026
  • Wang JB, Fu WT, He X, et al. Catalytic wet air oxidation of phenol with functionalized carbon materials as catalysts: reaction mechanism and pathway. J Environ Sci China. 2014;26(8):1741–1749. doi: 10.1016/j.jes.2014.06.015
  • Rubalcaba A, Suarez-Ojeda M, Carrera J, et al. Biodegradability enhancement of phenolic compounds by hydrogen peroxide promoted catalytic wet air oxidation. Catal Today. 2007;124:191–197. doi: 10.1016/j.cattod.2007.03.037
  • Quintanilla A, Casas JA, Rodriguez JJ. Hydrogen peroxide-promoted-CWAO of phenol with activated carbon. Appl Catal B. 2010;93:339–345. doi: 10.1016/j.apcatb.2009.10.007
  • Liou RM, Chen SH. Cuo impregnated activated carbon for catalytic wet peroxide oxidation of phenol. J Hazard Mater. 2009;172:498–506. doi: 10.1016/j.jhazmat.2009.07.012
  • Inchaurrondo NS, Massa P, Fenoglio R, et al. Efficient catalytic wet peroxide oxidation of phenol at moderate temperature using a high-load supported copper catalyst. Chem Eng J. 2012;198-199:426–434. doi: 10.1016/j.cej.2012.05.103
  • Messele SA, Stüber F, Bengoa C, et al. Phenol degradation by heterogeneous Fenton-like reaction using Fe supported over activated carbon. Proc Eng. 2012;42:1373–1377. doi: 10.1016/j.proeng.2012.07.529
  • Nichela DA, Berkovic AM, Costante MR, et al. Nitrobenzene degradation in Fenton-like systems using Cu(II) as catalyst. comparison between Cu(II)- and Fe(III)-based systems. Chem Eng J. 2013;228:1148–1157. doi: 10.1016/j.cej.2013.05.002
  • Yan Y, Wu X, Zhang H. Catalytic wet peroxide oxidation of phenol over Fe2O3/MCM-41 in a fixed bed reactor. Sep Purif Technol. 2016;171:52–61. doi: 10.1016/j.seppur.2016.06.047
  • Julcour-Lebigue C, Krou NJ, Andriantsiferana C, et al. Assessment and modeling of sequential process for water treatment adsorption and batch CWAO regeneration of activated carbon. Ind Eng Chem Res. 2012;51:8867–8874. doi: 10.1021/ie2020312
  • Lindsey ME, Tarr MA. Quantitation of hydroxyl radical during Fenton oxidation following a single addition of iron and peroxide. Chemosphere. 2000;41:409–417. doi: 10.1016/S0045-6535(99)00296-9
  • Andriantsiferana C, Julcour-Lebigue C, Creanga-Manole C, et al. Competitive adsorption of p-hydroxybenzoic acid and phenol on activated carbon: experimental study and modeling. J Environ Eng. 2013;139(3):402–409. doi: 10.1061/(ASCE)EE.1943-7870.0000600

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.