285
Views
24
CrossRef citations to date
0
Altmetric
Articles

Fabrication of NiFe2O4 magnetic nanoparticles loaded on activated carbon as novel nanoadsorbent for Direct Red 31 and Direct Blue 78 adsorption

&
Pages 2977-2993 | Received 30 May 2017, Accepted 16 Aug 2017, Published online: 05 Sep 2017

References

  • Tan KB, Vakili M, Horri BA, et al. Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Sep Purif Technol. 2015;150:229–242. doi: 10.1016/j.seppur.2015.07.009
  • Yagub MT, Sen TK, Afroze S, et al. Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci. 2014;209:172–184. doi: 10.1016/j.cis.2014.04.002
  • Cao J-S, Lin J-X, Fang F, et al. A new absorbent by modifying walnut shell for the removal of anionic dye: kinetic and thermodynamic studies. Bioresour. Technol. 2014;163:199–205. doi: 10.1016/j.biortech.2014.04.046
  • Van der Zee FP, Lettinga G, Field JA. Azo dye decolourisation by anaerobic granular sludge. Chemosphere. 2001;44:1169–1176. doi: 10.1016/S0045-6535(00)00270-8
  • Zeng S, Duan S, Tang R, et al. Magnetically separable Ni0.6Fe2.4O4 nanoparticles as an effective adsorbent for dye removal: synthesis and study on the kinetic and thermodynamic behaviors for dye adsorption. Chem Eng J. 2014;258:218–228. doi: 10.1016/j.cej.2014.07.093
  • Chafi M, Gourich B, Essadki A, et al. Comparison of electrocoagulation using iron and aluminium electrodes with chemical coagulation for the removal of a highly soluble acid dye. Desalination. 2011;281:285–292. doi: 10.1016/j.desal.2011.08.004
  • Osugi ME, Rajeshwar K, Ferraz ER, et al. Comparison of oxidation efficiency of disperse dyes by chemical and photoelectrocatalytic chlorination and removal of mutagenic activity. Electrochim Acta. 2009;54:2086–2093. doi: 10.1016/j.electacta.2008.07.015
  • Wang Q, Gao D, Gao C, et al. Removal of a cationic dye by adsorption/photodegradation using electrospun PAN/O-MMT composite nanofibrous membranes coated with. Int J Photoenergy. 2012;2012:1–8.
  • Cui D, Guo Y-Q, Cheng H-Y, et al. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor. J Hazard Mater. 2012;239-240:257–264. doi: 10.1016/j.jhazmat.2012.08.072
  • Haque MM, Smith WT, Wong DK. Conducting polypyrrole films as a potential tool for electrochemical treatment of azo dyes in textile wastewaters. J Hazard Mater. 2015;283:164–170. doi: 10.1016/j.jhazmat.2014.07.038
  • Nikooe N, Saljoughi E. Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution. Appl Surf Sci. 2017;413:41–49.
  • Zhou Z, Liu R. Fe3O4@ polydopamine and derived Fe3O4@ carbon core–shell nanoparticles: comparison in adsorption for cationic and anionic dyes. Colloids Surf A Physicochem Eng Asp. 2017;522:260–265. doi: 10.1016/j.colsurfa.2017.02.063
  • Goscianska J, Marciniak M, Pietrzak R. Ordered mesoporous carbons modified with cerium as effective adsorbents for azo dyes removal. Sep Purif Technol. 2015;154:236–245. doi: 10.1016/j.seppur.2015.09.042
  • Beyki MH, Bayat M, Shemirani F. Fabrication of core–shell structured magnetic nanocellulose base polymeric ionic liquid for effective biosorption of Congo red dye. Bioresour Technol. 2016;218:326–334. doi: 10.1016/j.biortech.2016.06.069
  • Liao Y, Hu J, Xie Q, et al. Novel dye sensitizers of polymeric metal complexes with benzodithiophene derivatives as donor and their photovoltaic performance. Spectrochim Acta A Mol Biomol Spectrosc. 2016;153:681–687. doi: 10.1016/j.saa.2015.09.015
  • Bujdák J. Effect of the layer charge of clay minerals on optical properties of organic dyes. A review. Appl Clay Sci. 2006;34:58–73. doi: 10.1016/j.clay.2006.02.011
  • Peláez-Cid A-A, Herrera-González A-M, Salazar-Villanueva M, et al. Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization. J Environ Manage. 2016;181:269–278. doi: 10.1016/j.jenvman.2016.06.026
  • Sellaoui L, Lima ÉC, Dotto GL, et al. Physicochemical modeling of reactive violet 5 dye adsorption on home-made cocoa shell and commercial activated carbons using the statistical physics theory. Results Phys. 2017;7:233–237. doi: 10.1016/j.rinp.2016.12.014
  • Cano OA, González CR, Paz JH, et al. Catalytic activity of palladium nanocubes/multiwalled carbon nanotubes structures for methyl orange dye removal. Catal Today. 2017;282:168–173. doi: 10.1016/j.cattod.2016.06.053
  • Maleki A, Hamesadeghi U, Daraei H, et al. Amine functionalized multi-walled carbon nanotubes: single and binary systems for high capacity dye removal. Chem Eng J. 2017;313:826–835. doi: 10.1016/j.cej.2016.10.058
  • Mirzaei N, Hadi M, Gholami M, et al. Sorption of acid dye by surfactant modificated natural zeolites. J Taiwan Inst Chem Eng. 2016;59:186–194. doi: 10.1016/j.jtice.2015.07.010
  • Liu S, Ding Y, Li P, et al. Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N,N-dimethyl dehydroabietylamine oxide. Chem Eng J. 2014;248:135–144. doi: 10.1016/j.cej.2014.03.026
  • Bai S, Shen X, Zhong X, et al. One-pot solvothermal preparation of magnetic reduced graphene oxide-ferrite hybrids for organic dye removal. Carbon N Y. 2012;50:2337–2346. doi: 10.1016/j.carbon.2012.01.057
  • Chen R, Wang W, Zhao X, et al. Rapid hydrothermal synthesis of magnetic CoxNi1− xFe2O4 nanoparticles and their application on removal of Congo red. Chem Eng J. 2014;242:226–233. doi: 10.1016/j.cej.2013.12.016
  • Zhang X, Zhang P, Wu Z, et al. Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles. Colloids Surf A Physicochem Eng Asp. 2013;435:85–90. doi: 10.1016/j.colsurfa.2012.12.056
  • Zabihi M, Asl AH, Ahmadpour A. Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell. J Hazard Mater. 2010;174:251–256. doi: 10.1016/j.jhazmat.2009.09.044
  • Cazetta AL, Vargas AM, Nogami EM, et al. NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption. Chem Eng J. 2011;174:117–125. doi: 10.1016/j.cej.2011.08.058
  • Doke KM, Khan EM. Equilibrium, kinetic and diffusion mechanism of Cr (VI) adsorption onto activated carbon derived from wood apple shell. Arab J Chem. 2012;10:252–260.
  • Şencan A, Karaboyacı M, Kılıç M. Determination of lead (II) sorption capacity of hazelnut shell and activated carbon obtained from hazelnut shell activated with ZnCl2. Environ Sci Pollut Res. 2015;22:3238–3248. doi: 10.1007/s11356-014-2974-9
  • Xu J, Xin P, Han Y, et al. Magnetic response and adsorptive properties for methylene blue of CoFe2O4/CoxFey/activated carbon magnetic composites. J Alloys Compd. 2014;617:622–626. doi: 10.1016/j.jallcom.2014.08.059
  • Yang N, Zhu S, Zhang D, et al. Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Mater Lett. 2008;62:645–647. doi: 10.1016/j.matlet.2007.06.049
  • Faulconer EK, von Reitzenstein NVH, Mazyck DW. Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery. J Hazard Mater. 2012;199-200:9–14. doi: 10.1016/j.jhazmat.2011.10.023
  • Maaz K, Karim S, Mumtaz A, et al. Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. J Magn Magn Mater. 2009;321:1838–1842. doi: 10.1016/j.jmmm.2008.11.098
  • Nguyen TD, Phan NH, Do MH, et al. Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: fabrication, characterization and heterogeneous fenton oxidation of methyl orange. J Hazard Mater. 2011;185:653–661. doi: 10.1016/j.jhazmat.2010.09.068
  • Zhou L, Ji L, Ma P-C, et al. Development of carbon nanotubes/CoFe2O4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb (II). J Hazard Mater. 2014;265:104–114. doi: 10.1016/j.jhazmat.2013.11.058
  • Wu X, Ding Z, Song N, et al. Effect of the rare-earth substitution on the structural, magnetic and adsorption properties in cobalt ferrite nanoparticles. Ceram Int. 2016;42:4246–4255. doi: 10.1016/j.ceramint.2015.11.100
  • Kafshgari LA, Ghorbani M, Azizi A. Fabrication and investigation of MnFe2O4/MWCNTs nanocomposite by hydrothermal technique and adsorption of cationic and anionic dyes. Appl Surf Sci. 2017;419:70–83.
  • Liang L, Zhu Q, Wang T, et al. The synthesis of core–shell Fe3O4@mesoporous carbon in acidic medium and its efficient removal of dye. Microporous Mesoporous Mater. 2014;197:221–228. doi: 10.1016/j.micromeso.2014.06.025
  • Zhu H-Y, Jiang R, Huang S-H, et al. Novel magnetic NiFe2O4/multi-walled carbon nanotubes hybrids: facile synthesis, characterization, and application to the treatment of dyeing wastewater. Ceram Int. 2015;41:11625–11631. doi: 10.1016/j.ceramint.2015.05.122
  • Sun X, Ou H, Miao C, et al. Removal of Sudan dyes from aqueous solution by magnetic carbon nanotubes: equilibrium, kinetic and thermodynamic studies. J Ind Eng Chem. 2015;22:373–377. doi: 10.1016/j.jiec.2014.07.034
  • Li X, Lu H, Zhang Y, et al. Fabrication of magnetic alginate beads with uniform dispersion of CoFe2O4 by the polydopamine surface functionalization for organic pollutants removal. Appl Surf Sci. 2016;389:567–577. doi: 10.1016/j.apsusc.2016.07.162
  • Zhao X, Wang W, Zhang Y, et al. Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for Congo Red. Chem Eng J. 2014;250:164–174. doi: 10.1016/j.cej.2014.03.113
  • Fang X, Xiao J, Yang S, et al. Investigation on microwave absorbing properties of loaded MnFe2O4 and degradation of reactive brilliant red X-3B. Appl Catal B Environ. 2015;162:544–550. doi: 10.1016/j.apcatb.2014.07.022
  • Gatabi MP, Moghaddam HM, Ghorbani M. Point of zero charge of maghemite decorated multiwalled carbon nanotubes fabricated by chemical precipitation method. J Mol Liq. 2016;216:117–125. doi: 10.1016/j.molliq.2015.12.087
  • Ai L, Zhang C, Liao F, et al. Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater. 2011;198:282–290. doi: 10.1016/j.jhazmat.2011.10.041
  • Djilani C, Zaghdoudi R, Djazi F, et al. Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. J Taiwan Inst Chem Eng. 2015;53:112–121. doi: 10.1016/j.jtice.2015.02.025
  • Mohan D, Sarswat A, Singh VK, et al. Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem Eng J. 2011;172:1111–1125. doi: 10.1016/j.cej.2011.06.054
  • Khosravi I, Yazdanbakhsh M, Goharshadi EK, et al. Preparation of nanospinels NiMnxFe2− xO4 using sol–gel method and their applications on removal of azo dye from aqueous solutions. Mater Chem Phys. 2011;130:1156–1161. doi: 10.1016/j.matchemphys.2011.08.048
  • Ezechi EH, bin Mohamed Kutty SR, Malakahmad A, et al. Characterization and optimization of effluent dye removal using a new low cost adsorbent: equilibrium, kinetics and thermodynamic study. Process Saf Environ Prot. 2015;98:16–32. doi: 10.1016/j.psep.2015.06.006
  • Farahani M, Abdullah SRS, Hosseini S, et al. Adsorption-based cationic dyes using the carbon active sugarcane bagasse. Procedia Environ Sci. 2011;10:203–208. doi: 10.1016/j.proenv.2011.09.035
  • Wawrzkiewicz M. Comparison of gel anion exchangers of various basicity in direct dye removal from aqueous solutions and wastewaters. Chem Eng J. 2011;173:773–781. doi: 10.1016/j.cej.2011.08.048
  • Wang L. Adsorption of direct blend yellow D-3RNL onto bamboo-base activated carbon: optimization, kinetics, and isotherm. Desalination Water Treat. 2013;51:5792–5804. doi: 10.1080/19443994.2012.760112
  • El Sayed Z. Loofa egyptiaca as a novel adsorbent for removal of direct blue dye from aqueous solution. J Environ Manage. 2009;90:2755–2761. doi: 10.1016/j.jenvman.2009.03.005
  • Mahmoodi NM, Najafi F, Neshat A. Poly (amidoamine-co-acrylic acid) copolymer: synthesis, characterization and dye removal ability. Ind Crops Prod. 2013;42:119–125. doi: 10.1016/j.indcrop.2012.05.025
  • Gerçel Ö, Gerçel HF, Koparal AS, et al. Removal of disperse dye from aqueous solution by novel adsorbent prepared from biomass plant material. J Hazard Mater. 2008;160:668–674. doi: 10.1016/j.jhazmat.2008.03.039
  • Nabil GM, El-Mallah NM, Mahmoud ME. Enhanced decolorization of reactive black 5 dye by active carbon sorbent-immobilized-cationic surfactant (AC-CS). J Ind Eng Chem. 2014;20:994–1002. doi: 10.1016/j.jiec.2013.06.034
  • Amin NK. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics. J Hazard Mater. 2009;165:52–62. doi: 10.1016/j.jhazmat.2008.09.067
  • Baccar R, Blánquez P, Bouzid J, et al. Modeling of adsorption isotherms and kinetics of a tannery dye onto an activated carbon prepared from an agricultural by-product. Fuel Process Technol. 2013;106:408–415. doi: 10.1016/j.fuproc.2012.09.006
  • Alves MD, Aracri FM, Cren ÉC, et al. Isotherm, kinetic, mechanism and thermodynamic studies of adsorption of a microbial lipase on a mesoporous and hydrophobic resin. Chem Eng J. 2017;311:1–12. doi: 10.1016/j.cej.2016.11.069
  • Postai DL, Demarchi CA, Zanatta F, et al. Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites Moluccana, a low cost adsorbent. Alexandria Eng J. 2016;55:1713–1723. doi: 10.1016/j.aej.2016.03.017
  • Mahmoodi NM, Salehi R, Arami M. Binary system dye removal from colored textile wastewater using activated carbon: kinetic and isotherm studies. Desalination. 2011;272:187–195. doi: 10.1016/j.desal.2011.01.023
  • Munagapati VS, Kim D-S. Equilibrium isotherms, kinetics, and thermodynamics studies for Congo red adsorption using calcium alginate beads impregnated with nano-goethite. Environ Saf. 2017;141:226–234. doi: 10.1016/j.ecoenv.2017.03.036
  • Ma J, Yu F, Zhou L, et al. Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl Mater Interfaces. 2012;4:5749–5760. doi: 10.1021/am301053m
  • Sayğılı H, Güzel F. Performance of new mesoporous carbon sorbent prepared from grape industrial processing wastes for malachite green and Congo red removal. Chem Eng Res Des. 2015;100:27–38. doi: 10.1016/j.cherd.2015.05.014
  • Gatabi MP, Moghaddam HM, Ghorbani M. Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents: equilibrium, kinetic, and thermodynamic study. J Nanopart Res. 2016;18:1–17. doi: 10.1007/s11051-015-3308-7
  • Wang P, Tang L, Wei X, et al. Synthesis and application of iron and zinc doped biochar for removal of p-nitrophenol in wastewater and assessment of the influence of co-existed Pb (II). Appl Surf Sci. 2017;392:391–401. doi: 10.1016/j.apsusc.2016.09.052
  • Liu Y, Zeng G, Tang L, et al. Highly effective adsorption of cationic and anionic dyes on magnetic Fe/Ni nanoparticles doped bimodal mesoporous carbon. J Colloid Interface Sci. 2015;448:451–459. doi: 10.1016/j.jcis.2015.02.037
  • Asfaram A, Fathi M, Khodadoust S, et al. Removal of Direct Red 12B by garlic peel as a cheap adsorbent: kinetics, thermodynamic and equilibrium isotherms study of removal. Spectrochim Acta Mol Biomol Spectrosc. 2014;127:415–421. doi: 10.1016/j.saa.2014.02.092
  • Jamil N, Khan SM, Ahsan N, et al. Removal of direct red 16 (textile dye) from industrial effluent by using feldspar. J Chem Soc Pak. 2014;36:191–197.
  • Konicki W, Aleksandrzak M, Moszyński D, et al. Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: equilibrium, kinetic and thermodynamic studies. J Colloid Interface Sci. 2017;496:188–200. doi: 10.1016/j.jcis.2017.02.031
  • Tahir MA, Bhatti HN, Iqbal M. Solar Red and brittle blue direct dyes adsorption onto Eucalyptus angophoroides bark: equilibrium, kinetics and thermodynamic studies. J Environ Chem Eng. 2016;4:2431–2439. doi: 10.1016/j.jece.2016.04.020
  • Prola LD, Machado FM, Bergmann CP, et al. Adsorption of direct blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon. J Environ Manage. 2013;130:166–175. doi: 10.1016/j.jenvman.2013.09.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.