68
Views
0
CrossRef citations to date
0
Altmetric
Articles

Applicability of two-dimensional surface model in bacterial biosorption system: an advanced approach in bioremediation of metal ionsFootnote*

Pages 102-111 | Received 17 Apr 2017, Accepted 09 Sep 2017, Published online: 27 Sep 2017

References

  • Khadivinia E, Sharafi H, Hadi F, et al. Cadmium biosorption by a glyphosate-degrading bacterium, a novel biosorbent isolated from pesticide-contaminated agricultural soils. J Ind Eng Chem. 2014;20:4304–4310. doi: 10.1016/j.jiec.2014.01.037
  • Mishra V. Biosorption of zinc ion: a deep comprehension. Appl Water Science. 2014;4:311–332. doi: 10.1007/s13201-013-0150-x
  • Subudhi S, Batta N, Pathak M, et al. Bioflocculant production and biosorption of zinc and lead by a novel bacterial species, Achromobacter sp. TERI-IASST N, isolated from oil refinery waste. Chemosphere. 2014;113:116–124. doi: 10.1016/j.chemosphere.2014.04.050
  • Pandey G. Removal of Cd (II) and Cu (II) from aqueous solution using Bengal gram husk as a biosorbent. Desal Water Treatment. 2016;57:7270–7279. doi: 10.1080/19443994.2015.1026280
  • Abdelwaha O, Amin NK, Ashtoukhy ESZ. Removal of zinc ions from aqueous solution using a cation exchange resin. Chem Eng Res Design. 2013;91:165–173. doi: 10.1016/j.cherd.2012.07.005
  • Liu HL, Chen BY, Lan YW, et al. Biosorption of Zn (II) and Cu (II) by the indigenous Thiobacillus thiooxidans. Chem Eng J. 2004;97:195–201. doi: 10.1016/S1385-8947(03)00210-9
  • Silva RMP, Rodriguez AA, Gomez JMDO, et al. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour Technol. 2009;100:1533–1538. doi: 10.1016/j.biortech.2008.06.057
  • Mishra V, Balomajumder C, Agarwal VK. Simultaneous adsorption and bioaccumulation: a study on continuous mass transfer in column reactor. Environ Prog Sustainable Energy. 2013;32:605–614. doi: 10.1002/ep.11671
  • Velasquez L, Dussan J. Biosorption and bioaccumulation of metal ions on dead and living biomass of Bacillus sphaericus. J Hazard Mater. 2009;167:713–716. doi: 10.1016/j.jhazmat.2009.01.044
  • Senthil Kumar P, Senthamarai C, Durgadevi A. Adsorption kinetics, mechanism, isotherm and thermodynamic analysis of copper ions onto the surface modified agricultural waste. Environ Prog Sustain Energy. 2014;33:28–37. doi: 10.1002/ep.11741
  • Ronda A, Martín-Lara MA, Balquez G, et al. Copper biosorption in the presence of lead onto olive stone and pine bark in batch and continuous systems. Environ Prog Sustain Energy. 2014;33:192–204. doi: 10.1002/ep.11780
  • Hohl H, Stumm W. Interaction of Pb2+ wit hydrous α-Al2O3. J Colloid Interface Sci. 1976;55:281–288. doi: 10.1016/0021-9797(76)90035-7
  • James RO, Parks GA. Adsorption of zinc (II) ion at the cinnabar (Hgs)/H2O interface. Am Inst Chem Eng. 1975;150:157–164.
  • Fein BJ, Boily JF, Yee N, et al. Potentiometric titrations of Bacillus subtilis cells to low pH and a comparison of modeling approaches. Geochim Cosmochim Acta. 2005;69:1123–1132. doi: 10.1016/j.gca.2004.07.033
  • Lutzenkirchen J. The constant capacitance model and variable ionic strength: an evaluation of possible applications and applicability. J Colloid Interface Sci. 1999;217:8–18. doi: 10.1006/jcis.1999.6348
  • Mishra V. Modeling of the batch biosorption system: study on exchange of protons with cell wall-bound mineral ions. Environ Technol. 2015. doi:10.1080/09593330.2015.1055822.
  • Mishra V. Study on proton mineral ions interchange at the solution/bacterial interface. Environ Prog Sustain Energy. 2015. doi:10.1002/ep.12259.
  • Yee N, Fein JB. Cd adsorption onto bacterial surfaces: a universal adsorption edge? Geochim Cosmochim Acta. 2001;65:2037–2042. doi: 10.1016/S0016-7037(01)00587-7
  • Martinez RE, Smith DS, Kulczycki E, et al. Determination of intrinsic bacterial surface acidity constants using a Donnan shell model and a continuous pKa distribution method. J Colloid Interface Sci. 2002;253:130–139. doi: 10.1006/jcis.2002.8541
  • Mishra V, Balomajumder C, Agarwal VK. Sorption of zinc (II) ion onto the surface of activated carbon derived from eucalyptus bark saw dust from industrial wastewater: isotherm, kinetics, mechanistic modeling and thermodynamics. Clean Soil Air Water. 2012;40:718–727. doi: 10.1002/clen.201100093
  • Mishra V, Balomajumder C, Agarwal VK. Biological removal of heavy metal zinc from industrial effluent by Zinc sequestering bacterium VMSDCM. Clean Technol Environ Policy. 2014;16:555–568. doi: 10.1007/s10098-013-0655-x
  • Djeribi R, Boucherit Z, Bouchloukh W, et al. A study of pH effects on the bacterial surface physicochemical properties of Acinetobacter baumannii. Colloids Surface B Biointerfaces. 2013;102:540–545. doi: 10.1016/j.colsurfb.2012.08.047
  • Herrera JLT, Flores SM, Friedmann J, et al. Chemical and thermal denaturation of crystalline bacterial S-layer proteins: an atomic force microscopy study. Microsc Res Technol. 2004;65:226–234. doi: 10.1002/jemt.20127
  • Patnaik P. Handbook of inorganic chemicals. New Delhi: Tata McGraw-Hill;2002:370–371.
  • Yee N, Fein JB, Daughney CJ. Experimental study of the pH, ionic strength, and reversibility behavior of bacteria–mineral adsorption. Geochim Cosmochim Acta. 2000;64:609–617. doi: 10.1016/S0016-7037(99)00342-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.